Publications by authors named "Maria Colzani"

Aims: Cardiac involvement is common in patients hospitalized with COVID-19 and correlates with an adverse disease trajectory. While cardiac injury has been attributed to direct viral cytotoxicity, serum-induced cardiotoxicity secondary to serological hyperinflammation constitutes a potentially amenable mechanism that remains largely unexplored.

Methods And Results: To investigate serological drivers of cardiotoxicity in COVID-19 we have established a robust bioassay that assessed the effects of serum from COVID-19 confirmed patients on human embryonic stem cell (hESC)-derived cardiomyocytes.

View Article and Find Full Text PDF

Regenerative cardiac tissue is a promising field of study with translational potential as a therapeutic option for myocardial repair after injury, however, poor electrical and contractile function has limited translational utility. Emerging research suggests scaffolds that recapitulate the structure of the native myocardium improve physiological function. Engineered cardiac constructs with anisotropic extracellular architecture demonstrate improved tissue contractility, signaling synchronicity, and cellular organization when compared to constructs with reduced architectural order.

View Article and Find Full Text PDF

Ischemic heart failure is due to irreversible loss of cardiomyocytes. Preclinical studies showed that human pluripotent stem cell (hPSC)-derived cardiomyocytes could remuscularize infarcted hearts and improve cardiac function. However, these cardiomyocytes remained immature.

View Article and Find Full Text PDF

Aims: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease.

View Article and Find Full Text PDF

Aims: Membrane-bound angiotensin-converting enzyme (ACE)2 is the main cellular access point for SARS-CoV-2, but its expression and the effect of ACE inhibition have not been assessed quantitatively in patients with heart failure. The aim of this study was to characterize membrane-bound ACE2 expression in the myocardium and myocardial vasculature in patients undergoing heart transplantation and to assess the effect of pharmacological ACE inhibition.

Methods And Results: Left ventricular (LV) tissue was obtained from 36 explanted human hearts from patients undergoing heart transplantation.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a screening method using heart cells from human embryonic stem cells that can be infected by a modified SARS-CoV-2 virus.
  • * They discovered two new potential drugs, benztropine and DX600, that might help prevent COVID-19 infection in heart cells, which is especially important for patients who can't get vaccinated.
View Article and Find Full Text PDF

COVID-19 patients often develop severe cardiovascular complications, but it remains unclear if these are caused directly by viral infection or are secondary to a systemic response. Here, we examine the cardiac tropism of SARS-CoV-2 in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and smooth muscle cells (hPSC-SMCs). We find that that SARS-CoV-2 selectively infects hPSC-CMs through the viral receptor ACE2, whereas in hPSC-SMCs there is minimal viral entry or replication.

View Article and Find Full Text PDF

In this study, we investigated the role of cardiomyocyte (CM) and endothelial cell (EC) specific interactions with collagen in the assembly of an operational myocardium in vitro. Engineered cardiac patches represent valuable tools for myocardial repair following infarction and are generally constituted of a suitable biomaterial populated by CMs and supportive cell types. Among those, ECs are required for tissue vascularization and positively modulate CM function.

View Article and Find Full Text PDF

The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells.

View Article and Find Full Text PDF

The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC.

View Article and Find Full Text PDF

The biosynthesis of endogenous brain-derived neurotrophic factor (BDNF) has thus far been examined in neurons where it is expressed at very low levels, in an activity-dependent fashion. In humans, BDNF has long been known to accumulate in circulating platelets, at levels far higher than in the brain. During the process of blood coagulation, BDNF is released from platelets, which has led to its extensive use as a readily accessible biomarker, under the assumption that serum levels may somehow reflect brain levels.

View Article and Find Full Text PDF

In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription.

View Article and Find Full Text PDF

Background: During late differentiation, erythroid cells undergo profound changes involving actin filament remodeling. One of the proteins controlling actin dynamics is gelsolin, a calcium-activated actin filament severing and capping protein. Gelsolin-null (Gsn(-/-)) mice generated in a C57BL/6 background are viable and fertile.

View Article and Find Full Text PDF

The Sox6 transcription factor plays critical roles in various cell types, including erythroid cells. Sox6-deficient mice are anemic due to impaired red cell maturation and show inappropriate globin gene expression in definitive erythrocytes. To identify new Sox6 target genes in erythroid cells, we used the known repressive double Sox6 consensus within the εy-globin promoter to perform a bioinformatic genome-wide search for similar, evolutionarily conserved motifs located within genes whose expression changes during erythropoiesis.

View Article and Find Full Text PDF