Even though most children acquire language effortlessly, not all do. Nowadays, language disorders are difficult to diagnose before 3-4 years of age, because diagnosis relies on behavioral criteria difficult to obtain early in life. Using electroencephalography, I investigated whether differences in newborns' neural activity when listening to sentences in their native language (French) and a rhythmically different unfamiliar language (English) relate to measures of later language development at 12 and 18 months.
View Article and Find Full Text PDFHuman infants acquire language with notable ease compared to adults, but the neural basis of their remarkable brain plasticity for language remains little understood. Applying a scaling analysis of neural oscillations to address this question, we show that newborns' electrophysiological activity exhibits increased long-range temporal correlations after stimulation with speech, particularly in the prenatally heard language, indicating the early emergence of brain specialization for the native language.
View Article and Find Full Text PDFAre neural oscillations biologically endowed building blocks of the neural architecture for speech processing from birth, or do they require experience to emerge? In adults, delta, theta, and low-gamma oscillations support the simultaneous processing of phrasal, syllabic, and phonemic units in the speech signal, respectively. Using electroencephalography to investigate neural oscillations in the newborn brain we reveal that delta and theta oscillations differ for rhythmically different languages, suggesting that these bands underlie newborns' universal ability to discriminate languages on the basis of rhythm. Additionally, higher theta activity during post-stimulus as compared to pre-stimulus rest suggests that stimulation after-effects are present from birth.
View Article and Find Full Text PDFWhen humans listen to speech, their neural activity tracks the slow amplitude fluctuations of the speech signal over time, known as the speech envelope. Studies suggest that the quality of this tracking is related to the quality of speech comprehension. However, a critical unanswered question is how envelope tracking arises and what role it plays in language development.
View Article and Find Full Text PDFLanguages show systematic variation in their sound patterns and grammars. Accordingly, they have been classified into typological categories such as stress-timed vs syllable-timed, or Head-Complement (HC) vs Complement-Head (CH). To date, it has remained incompletely understood how these linguistic properties are reflected in the acoustic characteristics of speech in different languages.
View Article and Find Full Text PDF