Environmental biotic stress factors act continuously on plants, through multiple molecular interactions that eventually lead to the establishment and progress of symbiotic or pathogenic complex interactions. Proteins and peptides play noteworthy roles in such biological processes, usually being the main effectors since the initial recognizing and elicitor functions until the following transduction, gene regulation and physiological responses activities. Ranging from specific regulators to direct antimicrobial agents, plant or pathogen proteins and peptides comprise the arsenal available to each side in this biological war, resulting from the genetic coding potential inherited by each one.
View Article and Find Full Text PDFUnlabelled: Dekkera bruxellensis is an industrially relevant yeast, especially in bioethanol production. The capacity of D. bruxellensis to assimilate nitrate can confer advantages of this yeast over Saccharomyces cerevisiae at industrial conditions.
View Article and Find Full Text PDFSoil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress.
View Article and Find Full Text PDFIncreasing efforts to preserve environmental resources have included the development of more efficient technologies to produce energy from renewable sources such as plant biomass, notably through biofuels and cellulosic residues. The relevance of the soybean industry is due mostly to oil and protein production which, although interdependent, results from coordinated gene expression in primary metabolism. Concerning biomass and biodiesel, a comprehensive analysis of gene regulation associated with cell wall components (as polysaccharides and lignin) and fatty acid metabolism may be very useful for finding new strategies in soybean breeding for the expanding bioenergy industry.
View Article and Find Full Text PDFUsing Phaseoleae defensins available in databases, a putative defensin gene was isolated in cowpea (Vigna unguiculata (L.) Walp.) and cloned from genomic cowpea DNA.
View Article and Find Full Text PDFAs eukaryotes, plants include in innate defense antimicrobial peptides (AMP), usually small cysteine or glycine-rich peptides effective against a wide range of pathogens. The main classes of AMPs are represented by alpha/beta-defensins, lipid-transfer proteins, thionins, cyclotides, snakins and hevein-like, according to amino acid sequence homology. In spite of increasing number of described AMPs from plants, last decade advances in methodologies for gene expression and the huge amounts of genomic, proteomic and other "-omics" data lead to new prospection strategies of novel potential candidates.
View Article and Find Full Text PDF