Publications by authors named "Maria Clara Castellanos"

Plants can evolve rapidly after pollinator changes, but the response of different floral traits to novel selection can vary. Floral morphology is often expected to show high integration to maintain pollination accuracy, while nectar traits can be more environmentally sensitive. The relative role of genetic correlations and phenotypic plasticity (PP) in floral evolution remains unclear, particularly for nectar traits, and can be studied in the context of recent pollinator changes.

View Article and Find Full Text PDF

The vast variation in floral traits across angiosperms is often interpreted as the result of adaptation to pollinators. However, studies in wild populations often find no evidence of pollinator-mediated selection on flowers. Evolutionary theory predicts this could be the outcome of periods of stasis under stable conditions, followed by shorter periods of pollinator change that provide selection for innovative phenotypes.

View Article and Find Full Text PDF

Despite the importance of pollinating insects to natural environments and agriculture, there have been few attempts to unite the existing plant-pollinator interaction datasets into a single depository using a common format. Accordingly, we have created one of the world's first online, open-access, and searchable pollinator-plant interaction databases. DoPI (The Database of Pollinator Interactions) was built from a systematic review of the scientific literature and unpublished datasets requested from researchers and organizations.

View Article and Find Full Text PDF

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors.

View Article and Find Full Text PDF

With many plant-pollinator interactions undergoing change as species' distributions shift, we require a better understanding of how the addition of new interacting partners can affect plant reproduction. One such group of floral visitors, nectar robbers, can deplete plants of nectar rewards without contributing to pollination. The addition of nectar robbing to the floral visitor assemblage could therefore have costs to the plant´s reproductive output.

View Article and Find Full Text PDF

Background And Aims: Assessing the resilience of plant-animal interactions is critical to understanding how plant communities respond to habitat disturbances. Most ecosystems experience some level of natural disturbance (e.g.

View Article and Find Full Text PDF

Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments.

View Article and Find Full Text PDF

Measuring heritable genetic variation is important for understanding patterns of trait evolution in wild populations, and yet studies of quantitative genetic parameters estimated directly in the field are limited by logistic constraints, such as the difficulties of inferring relatedness among individuals in the wild. Marker-based approaches have received attention because they can potentially be applied directly to wild populations. For long-lived, self-compatible plant species where pedigrees are inadequate, the regression-based method proposed by Ritland has the appeal of estimating heritabilities from marker-based estimates of relatedness.

View Article and Find Full Text PDF

Background And Aims: Intra-specific variation in nectar chemistry under natural conditions has been only rarely explored, yet it is an essential aspect of our understanding of how pollinator-mediated selection might act on nectar traits. This paper examines intra-specific variation in nectar sugar composition in field and glasshouse plants of the bumblebee-pollinated perennial herbs Aquilegia vulgaris subsp. vulgaris and Aquilegia pyrenaica subsp.

View Article and Find Full Text PDF

Male-male competition in plants is thought to exert selection on flower morphology and on the temporal presentation of pollen. Theory suggests that a plant's pollen dosing strategy should evolve to match the abundance and pollen transfer efficiency of its pollinators. Simultaneous pollen presentation should be favored when pollinators are infrequent or efficient at delivering the pollen they remove, whereas gradual dosing should optimize delivery by frequent and wasteful pollinators.

View Article and Find Full Text PDF

We compared pollen removal and deposition by hummingbirds and bumblebees visiting bird-syndrome Penstemon barbatus and bee-syndrome P. strictus flowers. One model for evolutionary shifts from bee pollination to bird pollination has assumed that, mostly due to grooming, pollen on bee bodies quickly becomes unavailable for transfer to stigmas, whereas pollen on hummingbirds has greater carryover.

View Article and Find Full Text PDF

Plants that experience variation in pollinator visitation rates or fluctuations in weather conditions may be expected to have evolved homeostatic mechanisms that regulate their nectar offerings, thereby providing a more constant reward to the pollinators. A limited degree of such nectar homeostasis is reported here for Penstemon. First, nectar removal stimulates replenishment: when nectar was removed hourly for 6 h from P.

View Article and Find Full Text PDF