A method for the fabrication of high diffraction efficiency optical transmission gratings with quasi-sinusoidal profile in glasses by microbeams of medium-mass ions of 5-6 MeV energy was devised and demonstrated. Gratings with a 30 μm grating constant have been manufactured and characterized by interference microscopy and microprofilometry. The obtained surface profiles of the gratings were found to be quasi-sinusoidal with up to 265 nm amplitude.
View Article and Find Full Text PDFThis study delves into the Single Band Ratiometric (SBR) method for luminescence thermometry, specifically employing Tb-doped LiSrGdWO (LSGW) as a novel phosphor. The prepared samples crystallize with the tetragonal scheelite structure, with the optimal Tb concentration pinpointed at 0.3Tb ions.
View Article and Find Full Text PDFThe development of lanthanide-doped non-contact luminescent nanothermometers with accuracy, efficiency and fast diagnostic tools attributed to their versatility, stability and narrow emission band profiles has spurred the replacement of conventional contact thermal probes. The application of lanthanide-doped materials as temperature nanosensors, excited by ultraviolet, visible or near infrared light, and the generation of emissions lying in the biological window regions, I-BW (650 nm-950 nm), II-BW (1000 nm-1350 nm), III-BW (1400 nm-2000 nm) and IV-BW (centered at 2200 nm), are notably growing due to the advantages they present, including reduced phototoxicity and photobleaching, better image contrast and deeper penetration depths into biological tissues. Here, the different mechanisms used in lanthanide ion-doped nanomaterials to sense temperature in these biological windows for biomedical and other applications are summarized, focusing on factors that affect their thermal sensitivity, and consequently their temperature resolution.
View Article and Find Full Text PDFThe incorporation of oleic acid and oleylamine, acting as organic surfactant coatings for a novel solvothermal synthesis procedure, resulted in the formation of monoclinic KLu(WO) nanocrystals. The formation of this crystalline phase was confirmed structurally from X-ray powder diffraction patterns and Raman vibrational modes, and thermally by differential thermal analysis. The transmission electron microscopy images confirm the nanodimensional size (~12 nm and ~16 nm for microwave-assisted and conventional autoclave solvothermal synthesis) of the particles and no agglomeration, contrary to the traditional modified sol-gel Pechini methodology.
View Article and Find Full Text PDFScintillator materials are widely used for a variety of applications such as high energy physics, astrophysics and medical imaging. Since the ideal scintillator does not exist, the search for scintillators with suitable properties for each application is of great interest. Here, Pr-doped KGd(PO) bulk single crystals with monoclinic structure (space group: P2) are grown from high temperature solutions and their structural, thermal and optical properties are studied as possible candidates for scintillation material.
View Article and Find Full Text PDFScintillator materials are used as detectors in the ray imaging techniques for medical diagnosis. Because the ideal medical scintillator material does not exist, many efforts are being made to find new materials that satisfy a greater number of properties. Here, the synthesis conditions of Pr:KGd(PO) nanocrystals by the modified Pechini method are optimized to obtain a single crystalline phase of those that form the polymorphism of KGd(PO).
View Article and Find Full Text PDFThis paper provides a generic way to fabricate a high-index contrast tapered waveguide platform based on dielectric crystal bonded on glass for sensing applications. As a specific example, KLu(WO) crystal on a glass platform is made by means of a three-technique combination. The methodology used is on-chip bonding, taper cutting with an ultra-precise dicing saw machine and inductively coupled plasma-reactive ion etching (ICP-RIE) as a post-processing step.
View Article and Find Full Text PDFScintillator materials have gained great interest for many applications, among which the medical applications stand out. Nowadays, the research is focused on finding new scintillator materials with properties that suit the needs of each application. In particular, for medical diagnosis a fast and intense response under high-energy radiation excitation is of great importance.
View Article and Find Full Text PDFWe report mid-infrared LiNbO depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications.
View Article and Find Full Text PDFMid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required.
View Article and Find Full Text PDFWe report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.
View Article and Find Full Text PDFThin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied.
View Article and Find Full Text PDFWe report the formation of two-dimensional disordered arrays of poly(methyl)methacrylate (PMMA) microcolumns with embedded single size distribution of Lu0.990Er0.520Yb0.
View Article and Find Full Text PDFWe report on laser operation in a (6 at. % Tm, 5 at. % Yb):KLu(WO4)2 codoped crystal.
View Article and Find Full Text PDFSingle pulse energies as high as 145 µJ were generated with a passively Q-switched diode-pumped Tm:KLu(WO) laser using poly-crystalline Cr:ZnS as a saturable absorber. The maximum average power reached 0.39 W at a pulse repetition rate of 2.
View Article and Find Full Text PDFA diode-pumped thin-disk laser based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies is realized. The emission is in the 1850-1945 nm spectral range for Tm-doping between 5 and 15 at. %.
View Article and Find Full Text PDFThe laser performance of the monoclinic Ho:RE(WO4)2 (RE = Y, Gd, Lu) crystals is compared under identical experimental conditions. The comparison deals with the laser transition of Ho3+ at ~2.1µm by using two different pump sources, a diode laser operating at 1941 nm and a diode-pumped Tm:KLu(WO4)2 laser operating at 1946 nm.
View Article and Find Full Text PDFYb(3+) and Ln(3+) (Ln(3+) = Er(3+) or Tm(3+)) codoped Lu(2)O(3) nanorods with cubic Ia3 symmetry have been prepared by low temperature hydrothermal procedures, and their luminescence properties and waveguide behavior analyzed by means of scanning near-field optical microscopy (SNOM). Room temperature upconversion (UC) under excitation at 980 nm and cathodoluminescence (CL) spectra were studied as a function of the Yb(+) concentration in the prepared nanorods. UC spectra revealed the strong development of Er(3+) (4)F(9/2) → (4)I(15/2) (red) and Tm(3+) (1)G(4) → (3)H(6) (blue) bands, which became the pre-eminent and even unique emissions for corresponding nanorods with the higher Yb(3+) concentration.
View Article and Find Full Text PDFWe demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho(3+)-doped KLu(WO(4))(2) crystal using a diode-pumped Tm(3+):KLu(WO(4))(2) laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.
View Article and Find Full Text PDFThermal analysis of the monoclinic solid state laser host KLu(WO4)2 is presented. The specific heat was measured by the relaxation method in the temperature range from 1.9 to 385 K: its value at room temperature is 0.
View Article and Find Full Text PDFSingle-pass pumping of a thin disk consisting of an only 50 microm thick epitaxial layer of 32 at.% Yb-doped KLu(WO(4))(2) grown on a 0.35 mm thick undoped KLu(WO(4))(2) substrate is demonstrated.
View Article and Find Full Text PDFThe fluorescence dynamics in Er3+ and Yb3+ doped KGd(WO4)2 and KY(WO4)2 has been investigated. Lifetimes have been measured for the Yb (2F(5/2)), Er (4I(13/2)), and Er (4S(3/2)) levels around 1, 1.5, and 0.
View Article and Find Full Text PDF