Pseudomonas aeruginosa is known to exhibit considerable resistance to the antimicrobial activity of the metal-sequestering protein calprotectin (CP). In this study, we demonstrate that although CP induces zinc deficiency in P. aeruginosa, a strain unable to import zinc through the two most important metal acquisition systems, namely ZnuABC and ZrmABCD, maintains significant growth capacity in the presence of high concentrations of CP.
View Article and Find Full Text PDFWe have recently shown that Pseudomonas aeruginosa, an opportunistic pathogen that chronically infects the lungs of patients with cystic fibrosis (CF) and other forms of lung disease, is extremely efficient in recruiting zinc from the environment and that this capability is required for its ability to cause acute lung infections in mice. To verify that P. aeruginosa faces zinc shortage when colonizing the lungs of human patients, we analyzed the expression of three genes that are highly induced under conditions of zinc deficiency (zrmA, dksA2 and rpmE2), in bacteria in the sputum of patients with inflammatory lung disease.
View Article and Find Full Text PDFPrevious studies have suggested that P. aeruginosa possesses redundant zinc uptake systems. To identify uncharacterized zinc transporters, we analyzed the genome-wide transcriptional responses of P.
View Article and Find Full Text PDFThe ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria, ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain.
View Article and Find Full Text PDF