Proc Natl Acad Sci U S A
August 2024
DNA recognition is critical for assembly of double-stranded DNA viruses, particularly for the initiation of packaging the viral genome into the capsid. The key component that recognizes viral DNA is the small terminase protein. Despite prior studies, the molecular mechanism for DNA recognition remained elusive.
View Article and Find Full Text PDFSingle-stranded DNA bacteriophages of the family are major components of the global virosphere. Microviruses are highly abundant in aquatic ecosystems and are prominent members of the mammalian gut microbiome, where their diversity has been linked to various chronic health disorders. Despite the clear importance of microviruses, little is known about the molecular mechanism of host infection.
View Article and Find Full Text PDFDNA recognition is critical for assembly of double-stranded DNA viruses, in particular for the initiation of packaging the viral genome into the capsid. DNA packaging has been extensively studied for three archetypal bacteriophage systems: , and phi29. We identified the minimal site within the region of bacteriophage HK97 specifically recognised by the small terminase and determined a cryoEM structure for the small terminase:DNA complex.
View Article and Find Full Text PDFMany essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.
View Article and Find Full Text PDFNanopore-based sensors for nucleic acid sequencing and single-molecule detection typically employ pore-forming membrane proteins with hydrophobic external surfaces, suitable for insertion into a lipid bilayer. In contrast, hydrophilic pore-containing molecules, such as DNA origami, have been shown to require chemical modification to favor insertion into a lipid environment. In this work, we describe a strategy for inserting polar proteins with an inner pore into lipid membranes, focusing here on a circular 12-subunit assembly of the thermophage G20c portal protein.
View Article and Find Full Text PDFBacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases.
View Article and Find Full Text PDFThe helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
August 2013
The assembly of double-stranded DNA bacteriophages is dependent on a small terminase protein that normally plays two important roles. Firstly, the small terminase protein specifically recognizes viral DNA and recruits the large terminase protein, which makes the initial cut in the dsDNA. Secondly, once the complex of the small terminase, the large terminase and the DNA has docked to the portal protein, and DNA translocation into a preformed empty procapsid has begun, the small terminase modulates the ATPase activity of the large terminase.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2013
DNA packaging in tailed bacteriophages and in evolutionarily related herpesviruses is controlled by a viral-encoded terminase. As in a number of other phages, in the Bacillus subtilis bacteriophages SF6 and SPP1 the terminase complex consists of two proteins: G1P and G2P. The crystal structure of the N-terminal DNA-binding domain of the bacteriophage SF6 small terminase subunit G1P is reported.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2012
The portal protein cn3 of bacteriophage CNPH82 is predicted to serve as a gateway for translocation of viral genome into preformed pro-capsid, like portal proteins from other double-stranded DNA tailed bacteriophages. The host of bacteriophage CNPH82 is the opportunistic human pathogenic bacterium Staphylococcus epidermidis, a major cause of nosocomial infections. The portal protein of this phage has been cloned, overexpressed and purified.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2012
Genome packaging into preformed viral procapsids is driven by powerful molecular motors. The small terminase protein is essential for the initial recognition of viral DNA and regulates the motor's ATPase and nuclease activities during DNA translocation. The crystal structure of a full-length small terminase protein from the Siphoviridae bacteriophage SF6, comprising the N-terminal DNA binding, the oligomerization core, and the C-terminal β-barrel domains, reveals a nine-subunit circular assembly in which the DNA-binding domains are arranged around the oligomerization core in a highly flexible manner.
View Article and Find Full Text PDFMTH1203, a β-CASP metallo-β-lactamase family nuclease from the archaeon Methanothermobacter thermautotrophicus, was identified as a putative nuclease that might contribute to RNA processing. The crystal structure of MTH1203 reveals that, in addition to the metallo-β-lactamase nuclease and the β-CASP domains, it contains two contiguous KH domains that are unique to MTH1203 and its orthologs. RNA-binding experiments indicate that MTH1203 preferentially binds U-rich sequences with a dissociation constant in the micromolar range.
View Article and Find Full Text PDFThe DNA-packaging motor in tailed bacteriophages requires nuclease activity to ensure that the genome is packaged correctly. This nuclease activity is tightly regulated as the enzyme is inactive for the duration of DNA translocation. Here, we report the X-ray structure of the large terminase nuclease domain from bacteriophage SPP1.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
November 2008
MTH909 is the Methanothermobacter thermautotrophicus orthologue of Saccharomyces cerevisiae TAN1, which is required for N(4)-acetylcytidine formation in tRNA. The protein consists of an N-terminal near-ferredoxin-like domain and a C-terminal THUMP domain. Unlike most other proteins containing the THUMP domain, TAN1 lacks any catalytic domains and has been proposed to form a complex with a catalytic protein that is capable of making base modifications.
View Article and Find Full Text PDF