We demonstrate that a finite-doping quantum critical point (QCP) naturally descends from the existence of a first-order Mott transition in the phase diagram of a strongly correlated material. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential, the zero-temperature equation of state gradually unfolds.
View Article and Find Full Text PDF