Lipoic acid (LA) is an essential cofactor in prokaryotic and eukaryotic organisms, required for the function of several multienzyme complexes such as oxoacid dehydrogenases. Prokaryotes either synthesize LA or salvage it from the environment. The salvage pathway in includes two lipoate-protein ligases, LplA1 and LplA2, as well as the amidotransferase LipL.
View Article and Find Full Text PDFLipoic acid (LA) is a sulfur-containing cofactor that covalently binds to a variety of cognate enzymes that are essential for redox reactions in all three domains of life. Inherited mutations in the enzymes that make LA, namely lipoyl synthase, octanoyltransferase, and amidotransferase, result in devastating human metabolic disorders. Unfortunately, because many aspects of this essential pathway are still obscure, available treatments only serve to alleviate symptoms.
View Article and Find Full Text PDFLipoate is an essential cofactor for key enzymes of oxidative and one-carbon metabolism. It is covalently attached to E2 subunits of dehydrogenase complexes and GcvH, the H subunit of the glycine cleavage system. Bacillus subtilis possess two protein lipoylation pathways: biosynthesis and scavenging.
View Article and Find Full Text PDFMicroorganisms, plants and animals regulate the synthesis of unsaturated fatty acids (UFAs) during changing environmental conditions as well as in response to nutrients. Unsaturation of fatty acid chains has important structural roles in cell membranes: a proper ratio of saturated to UFAs contributes to membrane fluidity. Alterations in this ratio have been implicated in various disease states including cardiovascular diseases, immune disorders, cancer and obesity.
View Article and Find Full Text PDFThe synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon.
View Article and Find Full Text PDFThe Bacillus subtilis DesK/DesR two-component system regulates the expression of the des gene coding for the Delta5 acyl lipid desaturase. It is believed that a decrease in membrane lipid fluidity activates the DesK/DesR signal transduction cascade, which results in synthesis of the Delta5 acyl lipid desaturase and desaturation of membrane phospholipids. These newly synthesized unsaturated fatty acids then act as negative signals of des transcription, thus generating a regulatory metabolic loop that optimizes membrane fluidity.
View Article and Find Full Text PDFSulphate permeases in the plasma membrane are responsible for uptake of environmental sulphate used in the sulphate assimilation pathway in bacteria and plants. Here it is reported that the ORF designated cysP, located on the Bacillus subtilis chromosome between cysH and five putative genes involved in sulphate assimilation, encodes a sulphate permease. cysP is able to complement Escherichia coli cysteine auxotrophs with mutations affecting either the membrane or periplasmic components of the sulphate-thiosulphate permease.
View Article and Find Full Text PDF