Objective: Methamphetamine and cannabis are two widely used substances among people living with HIV (PLWH). Whereas methamphetamine use has been found to worsen HIV-associated neurocognitive impairment, the effects of combined cannabis and methamphetamine use disorder on neurocognition in PLWH are not understood. In the present study, we aimed to determine the influence of these substance use disorders on neurocognition in PLWH and to explore if methamphetamine-cannabis effects interacted with HIV status.
View Article and Find Full Text PDFBackground: Methamphetamine abuse and human immunodeficiency virus (HIV) are common comorbidities. HIV-associated proteins, such as the regulatory protein TAT, may contribute to brain reward dysfunction, inducing an altered sensitivity to methamphetamine reward and/or withdrawal in this population.
Objective: These studies examined the combined effects of TAT protein expression and, chronic and binge methamphetamine regimens on brain reward function.
Objective: In HIV+ individuals, the virus enters the central nervous system and invades innate immune cells, producing important changes that result in neurological deficits. We aimed to determine whether HIV plays a direct role in neuronal excitability. Of the HIV peptides, Tat is secreted and acts in other cells.
View Article and Find Full Text PDFOsteopontin (OPN) is a molecule that is common in central nervous system (CNS) pathologies, which participates in the activation, migration, and survival of inflammatory cells. However, the mechanisms by which OPN modulates inflammatory pathways are not clear. To understand the role of OPN in CNS viral infections, we used a lethal mouse model of (WNV), characterized by the injection of high doses of the Eg101 strain of WNV, causing the increase of OPN levels in the brain since early time points.
View Article and Find Full Text PDFMethamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis).
View Article and Find Full Text PDFBackground: Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use.
Methods: We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response.
Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT.
View Article and Find Full Text PDFSialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) accesses the brain early in infection and can lead to neurocognitive disorders. The brain can also serve as a viral reservoir, but how virus is controlled in the brain is unknown. To examine this, CD8-depleting monoclonal antibody was injected into the cerebrospinal fluid of rhesus monkeys with chronic simian immunodeficiency virus (SIV) infection.
View Article and Find Full Text PDFMicroRNA (miR)-142 is up-regulated in the brain in HIV and SIV encephalitis (SIVE). We identified the cell types where miR-142 is up-regulated and its relevant downstream target. Fluorescent in situ hybridization combined with immunofluorescent labeling revealed that miR-142-3p and -5p are expressed within hippocampal neurons and myeloid cells in SIVE.
View Article and Find Full Text PDFPhospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model.
View Article and Find Full Text PDFObjective: Neurocognitive disorders are devastating consequences of HIV infection. Although antiretroviral regimens have been efficacious in both improving life expectancy and decreasing dementia, there has not been an effect on the overall prevalence of HIV-associated neurocognitive disorders. Whether early institution of treatment, or treatment with drugs that effectively penetrate the blood-brain barrier, would help protect from such conditions is not known.
View Article and Find Full Text PDFStrong evidence supports that CNS-specific CD4(+) T cells are central to the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Using a model of spontaneous EAE, we demonstrated that myelin basic protein (MBP)-specific CD4(+) T cells up-regulate activation markers in the CNS-draining cervical lymph nodes at a time when there is no T cell activation anywhere else, including the CNS, and before the appearance of clinical signs. In spontaneous EAE, the number of MBP-specific T cell numbers does not build up gradually in the CNS; instead, a swift migration of IFN-gamma-producing T cells into the CNS takes place approximately 24 h before the onset of neurological signs of EAE.
View Article and Find Full Text PDFIn order to assess the role of osteopontin (OPN) in leukocyte accumulation in inflammatory conditions, native OPN and its thrombin cleaved form (OPN+Thr) were studied in vivo using a rodent subcutaneous air pouch model (AP). Both forms of OPN-induced macrophage infiltration into the AP in wild-type mice. In animals lacking CD44, macrophage numbers were significantly reduced within the cavity, but cells still accumulated along the subcutaneous lining.
View Article and Find Full Text PDFBackground: Alcohol consumption is a common problem in HIV-infected individuals, and the effects of alcohol may alter the efficiency of the immune response, potentially aggravating the disease as well as affecting end organs, such as the brain. However, the elements of the virus-host interaction that are modulated by ethanol are poorly dissected.
Methods: Ethanol intake was conditioned in rhesus macaques prior to SIV infection, in order to mimic this common human behavior, and allow the evaluation of aspects of the virus-immune system interactions during acute time-points, when important facets of the infection are set up and when virus reproducibly enters the brain.
Objectives: Defects in memory CD4+ T cells correlate with development of AIDS in monkeys infected with simian immunodeficiency virus, but the early events leading to these deficits are unknown. We explored the role of cells specific to simian immunodeficiency virus and CD8 cells in the determination of CD4 failure and rapid disease course.
Design And Methods: Using MamuA*01-restricted Gag and Tat epitope tetramers, we compared the kinetics of specific response in animals with regular (REG) and rapid (RAP) progression.
In people infected with human immunodeficiency virus type 1 (HIV-1), the accumulation of macrophages in the brain correlates with encephalitis and dementia. We hypothesized that a pattern of surface marker expression in blood monocytes may serve as a marker for central nervous system (CNS) disease. Using the simian immunodeficiency virus (SIV)-rhesus monkey model, we analyzed functionally relevant surface markers on monocytes and macrophages from the blood and brain in animals that did or did not develop SIV encephalitis.
View Article and Find Full Text PDFIn monkeys infected with simian immunodeficiency virus (SIV), changes in body temperature and locomotor activity occur after the acute retroviral syndrome stage of the disease. However, alterations to the circadian rhythm of these factors in SIV-infected monkeys have not been reported. To determine whether the circadian rhythm of body temperature and locomotor activity are disrupted during SIV infection, we analyzed the temperature and activity patterns of SIV-infected monkeys through different stages of the disease, progressing to SIV encephalitis by using the cosinor model for circadian oscillation.
View Article and Find Full Text PDFThe host reaction to infection of the brain contributes to a number of CNS pathologies including neuro-AIDS. In this study, we have identified the accumulation of SIV-specific CTL in the brains of SIV-infected animals who have neurophysiological abnormalities but are otherwise asymptomatic. SIV-specific CTL enter the brain early after viral infection and are maintained in the brain even when those reactive with an immunodominant epitope in Tat are lost from the rest of the body.
View Article and Find Full Text PDFFacets of the immune response early after human immunodeficiency virus (HIV) infection influence the course of disease. In the simian immunodeficiency virus (SIV)-rhesus monkey system, a global dysfunction of CD4(+) T cell cytokine secretion was reported to develop early after infection [McKay PF, Barouch DH, Schmitz JE, Veazey RS, Gorgone DA, Lifton MA, Williams KC, and Letvin NL: J Virol 2003;77:4695-4702]. Because differences have been found in SIV pathogenesis depending on the origin of the monkeys, we investigated the correlation between animal background, defined by country of origin (India or China), and circulating T cell cytokine secretion as well as cycling ability within the first 3 mo of SIV infection.
View Article and Find Full Text PDFCNS abnormalities can be detected during chronic human immunodeficiency virus (HIV) infection, before the development of opportunistic infections or other sequelae of immunodeficiency. However, although end-stage dementia caused by HIV has been linked to the presence of infected and activated macrophages and microglia in the brain, the nature of the changes resulting in the motor and cognitive disorders in the chronic stage is unknown. Using simian immunodeficiency virus-infected rhesus monkeys, we sought the molecular basis for CNS dysfunction.
View Article and Find Full Text PDFThe use of China-derived monkeys in AIDS research has been limited by reports of reduced susceptibility to SIV. We performed a serial passage of SIV in Chinese macaques, which resulted in a viral stock capable of inducing simian AIDS and high levels of replication in these animals. Similar to HIV in humans, SIV pathogenesis in non-human primates is not limited by geographical origin.
View Article and Find Full Text PDFInjuries to the central nervous system (CNS) trigger an inflammatory reaction with potentially devastating consequences. In this report we compared the characteristics of the inflammatory response on spinal cord injury (SCI) caused by a stab wound between the T7 and T9 vertebrae and spontaneous experimental autoimmune encephalomyelitis (EAE). SCI and EAE were compared in two types of myelin basic protein Ac1-11-specific T-cell receptor transgenic mice: T/R+ mice harbor regulatory T cells, and T/R- mice lack regulatory T cells.
View Article and Find Full Text PDF