Publications by authors named "Maria Caterina Mione"

Article Synopsis
  • *Insulin-like Growth Factor Binding Protein 6 (IGFBP6) plays a role in tumor development and immune evasion, making it a potential target for GBM therapy.
  • *Research indicates that lactate and IGFBP6 interact, enhancing the expression of Monocarboxylate transporter 1 (MCT1) and influencing microglia behavior, as shown in both human samples and a zebrafish model.
View Article and Find Full Text PDF

The tumor microenvironment (TME) plays a pivotal role in establishing malignancy, and it is associated with high glycolytic metabolism and lactate release through monocarboxylate transporters (MCTs). Several lines of evidence suggest that lactate also serves as a signaling molecule through its receptor hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), thus functioning as a paracrine and autocrine signaling molecule. The aim of the present study was to investigate the role of lactate in glioblastoma (GBM) progression and metabolic reprogramming in an and model.

View Article and Find Full Text PDF

Cohesin is a protein complex consisting of four core subunits responsible for sister chromatid cohesion in mitosis and meiosis, and for 3D genome organization and gene expression through the establishment of long distance interactions regulating transcriptional activity in the interphase. Both roles are important for telomere integrity, but the role of cohesin in telomere maintenance mechanisms in highly replicating cancer cells in vivo is poorly studied. Here we used a zebrafish model of brain tumor, which uses alternative lengthening of telomeres (ALT) as primary telomere maintenance mechanism to test whether haploinsufficiency for Rad21, a member of the cohesin ring, affects ALT development.

View Article and Find Full Text PDF

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos.

View Article and Find Full Text PDF

: The up-regulation of a telomere maintenance mechanism (TMM) is a common feature of cancer cells and a hallmark of cancer. Routine methods for detecting TMMs in tumor samples are still missing, whereas telomerase targeting treatments are becoming available. In paediatric cancers, alternative lengthening of telomeres (ALT) is found in a subset of sarcomas and malignant brain tumors.

View Article and Find Full Text PDF

The activation of a telomere maintenance mechanism (TMM) is an essential step in cancer progression to escape replicative senescence and apoptosis. Alternative lengthening of telomeres (ALT) is found in a subset of malignant brain tumors with poor outcomes. Here, we describe a model of juvenile zebrafish brain tumor that progressively develops ALT.

View Article and Find Full Text PDF

Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia, hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein cholesterol that increase cardiovascular disease risk and type 2 diabetes. Although numerous predisposing genetic risk factors have been identified, the biological mechanisms underlying this complex phenotype are not fully elucidated. Here we introduce a systems biology approach based on network analysis to investigate deregulated biological processes and subsequently identify drug repurposing candidates.

View Article and Find Full Text PDF

Therapeutic approaches for cutaneous melanoma are flourishing, but despite promising results, there is an increasing number of reported primary or secondary resistance to the growing sets of drugs approved for therapy in the clinics. Combinatorial approaches may overcome resistance, as they may tackle specific weaknesses of melanoma cells, not sufficient on their own, but effective in combination with other therapies. The transgenic zebrafish line kita:ras develops melanoma with high frequency.

View Article and Find Full Text PDF

In the past years, evidence has emerged that hallmarks of human metabolic disorders can be recapitulated in zebrafish using genetic, pharmacological or dietary interventions. An advantage of modeling metabolic diseases in zebrafish compared to other "lower organisms" is the presence of a vertebrate body plan providing the possibility to study the tissue-intrinsic processes preceding the loss of metabolic homeostasis. While the small size of zebrafish is advantageous in many aspects, it also has shortcomings such as the difficulty to obtain sufficient amounts for biochemical analyses in response to metabolic challenges.

View Article and Find Full Text PDF

p53 is one of the most important tumour suppressor proteins currently known. It is activated in response to DNA damage and this activation leads to proliferation arrest and cell death. The abundance and activity of p53 are tightly controlled and reductions in p53's activity can contribute to the development of cancer.

View Article and Find Full Text PDF

Cancer is a disease of the elderly, and old age is its largest risk factor. With age, DNA damage accumulates continuously, increasing the chance of malignant transformation. The zebrafish has emerged as an important vertebrate model to study these processes.

View Article and Find Full Text PDF

Over the past 15 years, zebrafish have emerged as a powerful tool for studying human cancers. Transgenic techniques have been employed to model different types of tumors, including leukemia, melanoma, glioblastoma and endocrine tumors. These models present histopathological and molecular conservation with their human cancer counterparts and have been fundamental for understanding mechanisms of tumor initiation and progression.

View Article and Find Full Text PDF