Pregnancy causes significant metabolic and hemodynamic changes in a woman's physiology to allow for fetal growth. The inability to adapt to these changes might result in the development of hypertensive disorders of pregnancy (hypertension, preeclampsia or eclampsia), gestational diabetes and preterm birth. Contrary to previous beliefs these complications are not limited to the pregnancy period and may leave permanent vascular and metabolic damage.
View Article and Find Full Text PDFFamilial hypercholesterolaemia is an autosomal-dominant disorder associated with mutations in the LDL receptor gene resulting in markedly elevated plasma low-density lipoprotein cholesterol levels. FH is significantly underrecognised with as many as 1 in 300 having the heterozygous form and 1 in 1 million having the homozygous form of the disease. Early diagnosis and treatment of FH is paramount to reduce the risk of premature atherosclerotic cardiovascular disease and death.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2010
Recent work has made it clear that oxidant systems interact. To investigate potential cross talk between NADPH oxidase (Nox) 1 upregulation in vascular smooth muscle and endothelial function, transgenic mice overexpressing Nox1 in smooth muscle cells (Tg(SMCnox1)) were subjected to angiotensin II (ANG II)-induced hypertension. As expected, NADPH-dependent superoxide generation was increased in aortas from Nox1-overexpressing mice.
View Article and Find Full Text PDFThis review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues.
View Article and Find Full Text PDFThe extracellular superoxide dismutase 3 (SOD3) is highly expressed in both blood vessels and lungs. In different models of pulmonary injury, SOD3 is reduced; however, it is unclear whether this contributes to lung injury. To study the role of acute SOD3 reduction in lung injury, the SOD3 gene was deleted in adult mice by using the Cre-Lox technology.
View Article and Find Full Text PDFThe extracellular superoxide dismutase (SOD3), a secretory copper-containing enzyme, regulates angiotensin II (Ang II)-induced hypertension by modulating levels of extracellular superoxide anion. The present study was designed to determine the role of the copper transporter Menkes ATPase (MNK) in Ang II-induced SOD3 activity and hypertension in vivo. Here we show that chronic Ang II infusion enhanced systolic blood pressure and vascular superoxide anion production in MNK mutant (MNK(mut)) mice as compared with those in wild-type mice, which are associated with impaired acetylcholine-induced endothelium-dependent vasorelaxation in MNK(mut) mice.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2007
Vascular diseases are a major complication of diabetes mellitus (DM), although their etiology is poorly understood. NADPH oxidase-derived reactive oxygen species (ROS) production and inflammation are potential mediators of DM-associated vascular diseases. Using db/db mice as a Type 2 diabetes model, we examined the relationship between NADPH oxidase-derived ROS and vascular inflammation.
View Article and Find Full Text PDFMammalian cells are capable of generating metabolites of oxygen, referred to as reactive oxygen species (ROS) via the action of several enzymes. In vascular cells, ROS are predominantly produced by the NADPH oxidases, uncoupled nitric oxide synthase, xanthine oxidase and by mitochondrial sources. In hypertension, ROS production by these sources is increased, and this not only contributes to hypertension, but also causes vascular disease and dysfunction.
View Article and Find Full Text PDFThe low-density lipoprotein receptor-related protein (LRP) is a member of the LDL receptor gene family that binds several ligands, including tissue-type plasminogen activator (tPA). tPA is found in blood, where its primary function is as a thrombolytic enzyme, and in the central nervous system where it mediates events associated with cell death. Cerebral ischemia induces changes in the neurovascular unit (NVU) that result in brain edema.
View Article and Find Full Text PDFAmong Latin American countries, Colombia is considered a low-risk area for multiple sclerosis (MS) and no studies on MS prevalence have been conducted in any of the country's large urban settings. To fill this gap and assess the prevalence of MS in Bogotá as of December 31, 2002, this study reviewed the clinical records of patients diagnosed with MS in most Bogotá hospitals. This review produced a sample of 296 patients with an MS diagnosis whose reliability was verified by a neurologist with expertise in MS.
View Article and Find Full Text PDFWe previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.
View Article and Find Full Text PDFTumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily. TWEAK acts on responsive cells via binding to a small cell-surface receptor named fibroblast growth factor-inducible-14 (Fn14). TWEAK can stimulate numerous cellular responses including cell proliferation, migration, and proinflammatory molecule production.
View Article and Find Full Text PDF