Publications by authors named "Maria Carmen Mena"

Dissimilatory sulfate reduction (DSR)-an important reaction in the biogeochemical sulfur cycle-has been dated to the Palaeoarchaean using geological evidence, but its evolutionary history is poorly understood. Several lineages of bacteria carry out DSR, but in archaea only Archaeoglobus, which acquired DSR genes from bacteria, has been proven to catalyse this reaction. We investigated substantial rates of sulfate reduction in acidic hyperthermal terrestrial springs of the Kamchatka Peninsula and attributed DSR in this environment to Crenarchaeota in the Vulcanisaeta genus.

View Article and Find Full Text PDF

Teleost red blood cells (RBCs) are nucleated and therefore can propagate cellular responses to exogenous stimuli. RBCs can mount an immune response against a variety of fish viruses, including the viral septicemia hemorrhagic virus (VHSV), which is one of the most prevalent fish viruses resulting in aquaculture losses. In this work, RBCs from blood and head kidney samples of rainbow trout challenged with VHSV were analyzed via transcriptomic and proteomic analyses.

View Article and Find Full Text PDF

In recent years, fish nucleated red blood cells (RBCs) have been implicated in the response against viral infections. We have demonstrated that rainbow trout RBCs can express the antigen encoded by a DNA vaccine against viral hemorrhagic septicemia virus (VHSV) and mount an immune response to the antigen in vitro. In this manuscript, we show, for the first time, the role of RBCs in the immune response triggered by DNA immunization of rainbow trout with glycoprotein G of VHSV (GVHSV).

View Article and Find Full Text PDF

Viral hemorrhagic septicemia virus (VHSV) infection appears to be halted in rainbow trout nucleated red blood cells (RBCs). Diverse mechanisms are thought to be related to the antiviral immune response of rainbow trout RBCs to VHSV. However, the specific rainbow trout RBC proteins that interact directly with VHSV are still unknown.

View Article and Find Full Text PDF

Nucleated teleost red blood cells (RBCs) are known to express molecules from the major histocompatibility complex and peptide-generating processes such as autophagy and proteasomes, but the role of RBCs in antigen presentation of viruses have not been studied yet. In this study, RBCs exposed ex vivo to viral hemorrhagic septicemia virus (VHSV) were evaluated by means of transcriptomic and proteomic approaches. Genes and proteins related to antigen presentation molecules, proteasome degradation, and autophagy were up-regulated.

View Article and Find Full Text PDF

Rock bream iridovirus (RBIV) causes severe mass mortality in Korean rock bream () populations. To date, immune defense mechanisms of rock bream against RBIV are unclear. While red blood cells (RBCs) are known to be involved in the immune response against viral infections, the participation of rock bream RBCs in the immune response against RBIV has not been studied yet.

View Article and Find Full Text PDF

To better understand spring viremia of carp virus (SVCV) pathogenesis in zebrafish proteomic analysis was used to examine the plasma protein profile in SVCV-infected zebrafish. A total of 3062 proteins were identified. Of those 137, 63 and 31 proteins were enriched in blood samples harvested at 1, 2 and 5 days post SVCV infection, respectively.

View Article and Find Full Text PDF

Fish red blood cells (RBCs), are integral in several biologic processes relevant to immunity, such as pathogen recognition, pathogen binding and clearance, and production of effector molecules and cytokines. So far, one of the best strategies to control and prevent viral diseases in aquaculture is DNA immunization. DNA vaccines (based on the rhabdoviral glycoprotein G [gpG] gene) have been shown to be effective against fish rhabdoviruses.

View Article and Find Full Text PDF

Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright⁻Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation.

View Article and Find Full Text PDF

Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs.

View Article and Find Full Text PDF

It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to (VHSV).

View Article and Find Full Text PDF

Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far, methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales.

View Article and Find Full Text PDF

Purpose: To analyze the presence of total IgA and anti-gliadin antibodies (AGA) in BM from CD mothers who follow a gluten-free diet (GFD) and from mothers on a normal gluten-containing diet (ND).

Methods: 218 samples of mature milk were obtained at different months of lactation (1-6) from 83 mothers (2 or more samples per mother) from Italy (Naples), The Netherlands (Leiden) and Spain (Madrid, Valencia and Reus): 42 CD mothers on GFD for more than 2 years and 41 non-CD mothers on a ND. Whey samples were analyzed for AGA-IgA by an indirect homemade ELISA and for total IgA (g/L) by a commercial ELISA kit.

View Article and Find Full Text PDF

Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs.

View Article and Find Full Text PDF

Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves.

View Article and Find Full Text PDF