In recent years, the use of fire as a means by which to manage forest ecosystems has become more frequent in Europe. Fire has a significant impact on the soil, and it is therefore necessary to understand how controlled burns affect this invaluable resource. The purpose of this study was to evaluate the main alterations in the physical-chemical and biological properties of the soil because of a high intensity-controlled burn in "Los Boquerones" area (Villaviciosa de Córdoba, Spain).
View Article and Find Full Text PDFThe main aim of this study was to elucidate the effect of individual and joint fertilization with P and Zn on maize plants grown on typical Mediterranean soils with a limited Zn availability. For this purpose, we examined the effects of P and Zn fertilization individually and in combination on growth, yield and grain protein content in maize grown in pots filled with three different Mediterranean soils (LCV, FER and INM). Phosphorus and Zn translocation to grain was impaired, and aboveground dry matter and yield at harvest reduced by 8-85% (LCV and FER), in plants treated with Zn or P alone relative to unfertilized (control) plants.
View Article and Find Full Text PDFBackground: Zinc (Zn) deficiency in crops is commonly aggravated by high levels of phosphorus (P) in soil. In this work, the initial performance of pot-growing maize in response to the available P and Zn in soils with low available Zn and to the application of P and Zn fertilizers was investigated.
Results: The soils (six non-calcareous and 14 calcareous) ranged widely in available P (Olsen P: 5.
Background: Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains.
Results: Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P.
Background: Iron (Fe) deficiency chlorosis, a major nutritional problem in plants growing on calcareous soils, is related to the content and reactivity of soil iron oxides and carbonates. The effects of other soil components, however, need elucidation. In this paper we tested the hypothesis that application of high doses of phosphorus (P) to the soil can aggravate Fe chlorosis.
View Article and Find Full Text PDF