Publications by authors named "Maria Carmen Costas-Lago"

A series of stilbene analogues, in which a phenyl ring was replaced by the pyridazin-3(2H)-one nucleus, was designed and synthesized to be explored as platelet aggregation inhibitors. The proposed stilbene-pyridazinone hybrids were successfully obtained from simple starting materials and by Wittig's reaction. Most of the target compounds displayed improved in vitro activity in comparison with the standard drug, resveratrol, highlighting as the most potent the analogues 10d and 10e, with inhibition percentages of 94.

View Article and Find Full Text PDF

Novel aryl guanidinium analogues containing the pyridazin-3(2)-one core were proposed as minor groove binders (MGBs) with the support of molecular docking studies. The target dicationic or monocationic compounds, which show the guanidium group at different positions of the pyridazinone moiety, were synthesized using the corresponding silyl-protected pyridazinones as key intermediates. Pyridazinone scaffolds were converted into the adequate bromoalkyl derivatives, which by reaction with ,'-di-Boc-protected guanidine followed by acid hydrolysis provided the hydrochloride salts - in good yields.

View Article and Find Full Text PDF

A novel class of potential MAO-B inhibitors was designed and synthesized in good yield by combining the pyridazinone moiety with the dithiocarbamate framework, two relevant pharmacophores for drug discovery. The biological results obtained for the different pyridazinone/dithiocarbamate hybrids (compounds 8-14) indicated that most of them reversibly and selectively inhibit the hMAO-B in vitro with IC values in the µM range and exhibit not significant cellular toxicity. The analogues 9a, 11a, 12a, 12b and 12b, which present the dithiocarbamate fragment derivatized with a piperidin-1-yl or pyrrolidin-1-yl group and placed at C3 or C4 of the diazine ring, were the most attractive compounds of these series.

View Article and Find Full Text PDF

The 3-pyridazinylcoumarin scaffold was previously reported as an efficient core for the discovery of reversible and selective inhibitors of MAO-B, a validated drug target for PD therapy which also plays an important role in the AD progress. Looking for its structural optimization, novel compounds of hybrid structure coumarin-pyridazine, differing in polarizability and lipophilicity properties, were synthesized and tested against the two MAO isoforms, MAO-A and MAO-B (compounds 17a-f and 18a-f). All the designed compounds selectively inhibited the MAO-B isoenzyme, exhibiting many of them IC values ranging from sub-micromolar to nanomolar grade and lacking neuronal toxicity.

View Article and Find Full Text PDF

Compounds of hybrid structure pyridazine-coumarin were discovered as potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B). These compounds were synthesized in good yield following a multistep approach based on Knoevenagel reaction and using as key intermediate pyridazinone 16, which was obtained from maleic anhydride and furan. Compounds 9b and 9d are the most active compounds of these series, with IC values in the sub-micromolar range, and lack of cytotoxic effects.

View Article and Find Full Text PDF

New series of pyridazinone derivatives (4, 5 and 6) were synthesized in good yields following a synthetic strategy based on singlet oxygen oxidation of alkyl furans, in which a suitable β(α)-substituted γ-hydroxybutenolide (10 or 11) or a bicyclic lactone (12 or 13) was the key intermediate. The synthesized compounds were tested in vitro as antiplatelet agents and some of them (compounds 4b, 4d and 5b) exhibited potent inhibitory effects on collagen-induced platelet aggregation with IC50 values in the low μM range. Studies performed with the most active compound of these series (4b) demonstrated its lack of activity as inhibitor of platelet aggregation induced by other agonists as thrombin, ionomycin or U-46619 suggesting a selective action on the biochemical mechanisms triggered by collagen in the platelets.

View Article and Find Full Text PDF

In the title compound, C21H24N2O2Si, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether group are placed toward opposite sides and the tert-butyl and pyridazinone moieties are anti-oriented across the Si-O bond [torsion angle = -168.44 (19)°]. In the crystal, mol-ecules are assembled into inversion dimers through co-operative N-H⋯O hydrogen bonds between the NH groups and O atoms of the pyridazinone rings of neighbouring mol-ecules.

View Article and Find Full Text PDF

In the title compound, C21H24N2O2Si, a new pyridazin-3(2H)-one derivative, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether are located on the same side of the pyridazinone ring and the C-C-O-Si torsion angle is -140.69 (17)°. In the crystal, mol-ecules are linked by pairs of strong N-H⋯O hydrogen bonds into centrosymmetric dimers with graph-set notation R 2 (2)(8).

View Article and Find Full Text PDF

The title N-benzyl-phthalimide derivative, C16H13NO3, consists of two planar moieties, viz. the phthalimide system (r.m.

View Article and Find Full Text PDF