Monoculture systems in South East Asia are facing challenges due to climate change-induced extreme weather conditions, leading to significant annual production losses in rice and oil palm. To ensure the stability of these crops, innovative strategies like resilient agroforestry systems need to be explored. Converting oil palm (Elaeis guineensis) monocultures to rice (Oryza sativa)-based intercropping systems shows promise, but achieving optimal yields requires adjusting palm density and identifying rice varieties adapted to changes in light quantity and diurnal fluctuation.
View Article and Find Full Text PDFThe OMICAS alliance is part of the Colombian government's Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program's kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships.
View Article and Find Full Text PDFBacterial panicle blight (BPB) caused by Burkholderia glumae is one of the main concerns for rice production in the Americas since bacterial infection can interfere with the grain-filling process and under severe conditions can result in high sterility. B. glumae has been detected in several rice-growing areas of Colombia and other countries of Central and Andean regions in Latin America, although evidence of its involvement in decreasing yield under these conditions is lacking.
View Article and Find Full Text PDFTraditional methods to measure spatio-temporal variations in biomass rely on a labor-intensive destructive sampling of the crop. In this paper, we present a high-throughput phenotyping approach for the estimation of Above-Ground Biomass Dynamics (AGBD) using an unmanned aerial system. Multispectral imagery was acquired and processed by using the proposed segmentation method called GFKuts, that optimally labels the plot canopy based on a Gaussian mixture model, a Montecarlo based K-means, and a guided image filtering.
View Article and Find Full Text PDFSoil drying causes leaf rolling in rice, but the relationship between leaf rolling and drought tolerance has historically confounded selection of drought-tolerant genotypes. In this study on tropical japonica and aus diversity panels (170-220 genotypes), the degree of leaf rolling under drought was more affected by leaf morphology than by stomatal conductance, leaf water status, or maintenance of shoot biomass and grain yield. A range of canopy temperature and leaf rolling (measured as change in normalized difference vegetation index [ΔNDVI]) combinations were observed among aus genotypes, indicating that some genotypes continued transpiration while rolled.
View Article and Find Full Text PDFThe ability to assimilate C and allocate non-structural carbohydrates (NSCs) to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation.
View Article and Find Full Text PDFSelection for early vigour can improve rice (Oryza sativa L.) seedlings' access to resources, weed competitiveness and yield. Little is known about the relationships between early vigour and drought tolerance.
View Article and Find Full Text PDFBackground: Early vigour (biomass accumulation) is a useful but complex trait in rainfed rice (Oryza sativa L). Little is known on trade-offs with drought tolerance. This study explored the relevance of (sugar) metabolic and morphogenetic traits to describe the genetic diversity of rice early vigour and its phenotypic plasticity under drought conditions.
View Article and Find Full Text PDF