Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies.
View Article and Find Full Text PDFIn this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Controlled integration of metallic nanoparticles (NPs) onto photonic nanostructures enables the realization of complex devices for extreme light confinement and enhanced light-matter interaction. For instance, such NPs could be massively integrated on metal plates to build nanoparticle-on-mirror (NPoM) nanocavities or photonic integrated waveguides (WGs) to build WG-driven nanoantennas. However, metallic NPs are usually deposited via drop-casting, which prevents their accurate positioning.
View Article and Find Full Text PDF