Activation of CO2 is demonstrated by its spontaneous dissociative reaction with the gas-phase anion complex NUOCl2(-), which can be considered as NUO(+) coordinated by two chloride anion ligands. This reaction was previously predicted by density functional theory to occur exothermically, without barriers above the reactant energy. The present results demonstrate the validity of the prediction of microscopic reversibility, and provide a rare case of spontaneous dissociative addition of CO2 to a gas-phase complex.
View Article and Find Full Text PDFGas-phase complexes of uranyl(V) ligated to anions X(-) (X = F, Cl, Br, I, OH, NO3, ClO4, HCO2, CH3CO2, CF3CO2, CH3COS, NCS, N3), [UO2X2](-), were produced by electrospray ionization and reacted with O2 in a quadrupole ion trap mass spectrometer to form uranyl(VI) anionic complexes, [UO2X2(O2)](-), comprising a superoxo ligand. The comparative rates for the oxidation reactions were measured, ranging from relatively fast [UO2(OH)2](-) to slow [UO2I2](-). The reaction rates of [UO2X2](-) ions containing polyatomic ligands were significantly faster than those containing the monatomic halogens, which can be attributed to the greater number of vibrational degrees of freedom in the polyatomic ligands to dissipate the energy of the initial O2-association complexes.
View Article and Find Full Text PDFSeveral lanthanide and actinide tetranitrate ions, M(III)(NO3)4(-), were produced by electrospray ionization and subjected to collision induced dissociation in quadrupole ion trap mass spectrometers. The nature of the MO(NO3)3(-) products that result from NO2 elimination was evaluated by measuring the relative hydrolysis rates under thermalized conditions. Based on the experimental results it is inferred that the hydrolysis rates relate to the intrinsic stability of the M(IV) oxidation states, which correlate with both the solution IV/III reduction potentials and the fourth ionization energies.
View Article and Find Full Text PDFThe following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with water in an ion trap revealed that water addition terminates at AnO(2)(+)·(H(2)O)(4) (An = U, Np, Pu) and AnO(2)(OH)(+)·(H(2)O)(3) (An = U, Pu), each with four equatorial ligands. These terminal hydrates evidently correspond to the maximum inner-sphere water coordination in the gas phase, as substantiated by density functional theory (DFT) computations of the hydrate structures and energetics.
View Article and Find Full Text PDFAnionic lanthanide chloride clusters, Ln(n)Cl(3n+1)(-), were produced by electrospray ionization (ESI) of LnCl(3) in isopropanol, where Ln = La-Lu (except Pm); the clusters were characterized using a quadrupole ion trap mass spectrometer. High-abundance "magic number" clusters were apparent at n = 4 for the early Ln (La-Sm), and at n = 5 for the late Ln (Dy-Lu). Density functional theory computations of La(n)Cl(3n+1)(-) and Lu(n)Cl(3n+1)(-) clusters (n = 1-6) indicate that the clusters with n = 4-6 are rings with a central chlorine atom.
View Article and Find Full Text PDFThe gas-phase reactions of two dipositive actinide ions, Th(2+) and U(2+), with CH(4), C(2)H(6), and C(3)H(8) were studied by both experiment and theory. Fourier transform ion cyclotron resonance mass spectrometry was employed to study the bimolecular ion-molecule reactions; the potential energy profiles (PEPs) for the reactions, both observed and nonobserved, were computed by density functional theory (DFT). The experiments revealed that Th(2+) reacts with all three alkanes, including CH(4) to produce ThCH(2)(2+), whereas U(2+) reacts with C(2)H(6) and C(3)H(8), with different product distributions than for Th(2+).
View Article and Find Full Text PDFIn this work, we report results of calculations based on the density functional theory (B3LYP/6-311+G(2d,2p)) of different species containing a terminal cyaphide bond. The chosen species range from small molecules and anions (C⋮P(-), HC⋮P, tBuC⋮P, [(CF3)3BC⋮P)](-)) to large transition-metal containing complexes ([(dppe)2Ru(H)(C⋮P)], trans-[Pt(PMe3)2(Cl)(C⋮P)], trans-[Pt(PMe3)2(Cl)(CP)Pt(PMe3)2]). A comparative analysis of the description of the C⋮P bond obtained by different methodologies is presented.
View Article and Find Full Text PDF