Peloids are made by mixing clay materials with thermo-mineral waters, enriched with organic substances from microorganisms during maturation. Their beneficial properties may depend on clay minerals, water characteristics, and microbial components, although strong evidence is lacking. Next Generation Sequencing (NGS) allows a comprehensive approach to studying the entire microbial community, including cultivable and uncultivable bacteria.
View Article and Find Full Text PDFIntroduction: In Italy, over 4.8 million individuals aged 0-19 years have been infected with SARS-CoV-2. This study aims to evaluate the spread of SARS-CoV-2 within schools in Modena province and the influence of anti-SARS-CoV-2 vaccination coverage.
View Article and Find Full Text PDFExposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure.
View Article and Find Full Text PDFThe current understanding of the impact of natural cloud condensation nuclei (CCN) variability on cloud properties in marine air is low, thus contributing to climate prediction uncertainty. By analyzing cloud remote sensing observations (2009-2015) at Mace Head (west coast of Ireland), we show the oceanic biota impact on the microphysical properties of stratiform clouds over the Northeast Atlantic Ocean. During spring to summer (seasons of enhanced oceanic biological activity), clouds typically host a higher number of smaller droplets resulting from increased aerosol number concentration in the CCN relevant-size range.
View Article and Find Full Text PDFBackground And Aim: In early 2020, SARS-CoV-2 was declared a pandemic by the WHO and Italy was one of the first and most severely affected country in Europe. Despite the global interest about COVID-19 pandemic, several aspects of this infection are still unclear, especially in pediatric population. This study aims to investigate the characteristics of the isolated or quarantined children and adolescents followed by the Public Health Department of the Italian province of Modena during the first wave of COVID-19.
View Article and Find Full Text PDFAcidity profoundly affects almost every aspect that shapes the composition of ambient particles and their environmental impact. Thermodynamic analysis of gas-particle composition datasets offers robust estimates of acidity, but they are not available for long periods of time. Fog composition datasets, however, are available for many decades; we develop a thermodynamic analysis to estimate the ammonia in equilibrium with fog water and to infer the pre-fog aerosol pH starting from fog chemical composition and pH.
View Article and Find Full Text PDFSoot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties.
View Article and Find Full Text PDFThe spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface.
View Article and Find Full Text PDFThe mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase.
View Article and Find Full Text PDFBursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray's water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP).
View Article and Find Full Text PDFThe study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water.
View Article and Find Full Text PDFRelevant concentrations of dimethyl- and diethylammonium salts (DMA+ and DEA+) were measured in submicrometer marine aerosol collected over the North Atlantic during periods of high biological activity (HBA) in clean air masses (median concentration (minimum-maximum)=26(6-56) ng m(-3)). Much lower concentrations were measured during periods of low biological activity (LBA): 1 (<0.4-20) ng m(-3) and when polluted air masses were advected to the sampling site: 2 (<0.
View Article and Find Full Text PDFEpidemiological studies show a clear link between increased mortality and enhanced concentrations of ambient aerosols. The chemical and physical properties of aerosol particles causing these health effects remain unclear. A major fraction of the ambient aerosol particle mass is composed of secondary organic aerosol (SOA).
View Article and Find Full Text PDFThe functional group compositions of atmospheric aerosol water-soluble organic compoundswere obtained employing proton nuclear magnetic resonance (1H NMR) spectroscopy in a series of recent experiments in several areas of the world characterized by different aerosol sources and pollution levels. Here, we discuss the possibility of using 1H NMR functional group distributions to identifythe sources of aerosol in the different areas. Despite the limited variability of functional group compositions of atmospheric aerosol samples, characteristic 1H NMR fingerprints were derived for three major aerosol sources: biomass burning, secondary formation from anthropogenic and biogenic VOCs, and emission from the ocean.
View Article and Find Full Text PDFThe chemical composition of water-soluble organic carbon (WSOC) in atmospheric aerosol particles is largely unexplored, due to the myriad of individual compounds, which has hampered attempts to attain a full characterization at the molecular level. An alternative approach, focusing on the analysis of a few main chemical classes, allowed the quantitative fractionation of WSOC into neutral compounds (NC), mono- and di-acids (MDA) and polyacids (PA) through an anion-exchange liquid chromatographic method. Previous attempts to quantify NC, MDA and PA relied on a low-pressure chromatographic technique using a volatile buffer, followed by total organic carbon (TOC) analysis of the fractions, or alternatively on a faster HPLC-UV method which provided a quantification of the fractions based on empirical relationships between UV signal and TOC concentration.
View Article and Find Full Text PDFThis paper discusses the partitioning of metals (K, Na, Ca, Mg, Al, Cu, Fe, Pb and Zn) between the aqueous phase and the suspended insoluble material in fog samples collected in the Po Valley during two extensive fields campaigns. Metals represent on average 11% of the mass of suspended insoluble matter, while the main component is carbon (both organic carbon, OC = 35%, and black carbon, BC = 8%). The unaccounted suspended matter mass is very high, on average 46%, and is attributable to non metallic species, such as O and N and of Si.
View Article and Find Full Text PDFA conspicuous fraction of the water soluble organic compounds (WSOC) in fog and fine aerosol samples is composed by monosaccharide anhydrides, such as levoglucosan and its stereoisomers, galactosan and mannosan. Levoglucosan is produced exclusively during wood combustion processes, making it a very useful tracer for plant combustion emissions in the atmosphere. This paper describes a new experimental approach, based on electrospray-tandem mass spectrometry (ESI-MS/MS), for the identification of levoglucosan in fog water samples.
View Article and Find Full Text PDFMarine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earth's albedo and climate. So far, much of the focus on marine aerosol has centred on the production of aerosol from sea-salt and non-sea-salt sulphates. Recent field experiments, however, have shown that known aerosol production processes for inorganic species cannot account for the entire aerosol mass that occurs in submicrometre sizes.
View Article and Find Full Text PDFBinary homogeneous nucleation of water-succinic acid and water-glutaric acid systems have been investigated. The numerical approach was based on the classical nucleation theory. Usually, nucleation is discussed in terms of kinetics, but the thermodynamics involved is undoubtedly equally important.
View Article and Find Full Text PDF