Publications by authors named "Maria C De Beer"

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles.

View Article and Find Full Text PDF

The liver is the most common site of metastatic disease. Although this metastatic tropism may reflect the mechanical trapping of circulating tumour cells, liver metastasis is also dependent, at least in part, on the formation of a 'pro-metastatic' niche that supports the spread of tumour cells to the liver. The mechanisms that direct the formation of this niche are poorly understood.

View Article and Find Full Text PDF

Complex associations exist between inflammation and thrombosis, with the inflammatory state tending to promote coagulation. Fibrinogen, an acute phase protein, has been shown to interact with the amyloidogenic ß-amyloid protein of Alzheimer's disease. However, little is known about the association between fibrinogen and serum amyloid A (SAA), a highly fibrillogenic protein that is one of the most dramatically changing acute phase reactants in the circulation.

View Article and Find Full Text PDF

Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a high-density apolipoprotein whose plasma levels can increase more than 1000-fold during a severe acute-phase inflammatory response and are more modestly elevated in chronic inflammation. SAA is thought to play important roles in innate immunity, but its biological activities have not been completely delineated. We previously reported that SAA deficiency protects mice from developing abdominal aortic aneurysms (AAAs) induced by chronic angiotensin II (AngII) infusion.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.

View Article and Find Full Text PDF

The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.

View Article and Find Full Text PDF

HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disorder, and several studies have demonstrated a positive association between plasma serum amyloid A (SAA) levels and cardiovascular disease risk. The aim of the study was to examine whether SAA has a role in atherogenesis, the underlying basis of most cardiovascular disease.

Methods And Results: Mice globally deficient in acute-phase isoforms Saa1 and Saa2 (Saa(-/-)) were crossed to Ldlr(-/-) mice (Saa(-/-)Ldlr(-/-)).

View Article and Find Full Text PDF

Objective: Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion.

View Article and Find Full Text PDF

Objective: Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice.

Approach And Results: Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.

View Article and Find Full Text PDF

Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.

View Article and Find Full Text PDF

SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms.

View Article and Find Full Text PDF

To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I.

View Article and Find Full Text PDF

Objective: To investigate the mechanisms by which macrophage scavenger receptor BI (SR-BI) regulates macrophage cholesterol homeostasis and protects against atherosclerosis.

Methods And Results: The expression and function of SR-BI was investigated in cultured mouse bone marrow-derived macrophages (BMM). SR-BI, the other scavenger receptors SRA and CD36 and the ATP-binding cassette transporters ABCA1 and ABCG1 were each distinctly regulated during BMM differentiation.

View Article and Find Full Text PDF

Objective: Levels of serum amyloid A (SAA), an acute-phase protein carried on high-density lipoprotein (HDL), increase in inflammatory states and are associated with increased risk of cardiovascular disease. HDL colocalizes with vascular proteoglycans in atherosclerotic lesions. However, its major apolipoprotein, apolipoprotein A-I, has no proteoglycan-binding domains.

View Article and Find Full Text PDF

ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) protects the artery wall by removing cholesterol from lipid-laden macrophages. However, recent evidence suggests that HDL might also inhibit atherogenesis by combating inflammation.

Methods And Results: To identify potential antiinflammatory mechanisms, we challenged macrophages with lipopolysaccharide, an inflammatory microbial ligand for Toll-like receptor 4.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.

View Article and Find Full Text PDF

Objective: The purpose of this study was to investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL).

Methods And Results: We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions.

View Article and Find Full Text PDF

Objective: The purpose of this study was to examine the interactive action of serum amyloid A (SAA), group IIA secretory phospholipase A(2) (sPLA(2)-IIA), and cholesteryl ester transfer protein (CETP) on HDL remodeling and cholesterol efflux during the acute phase (AP) response elicited in humans after cardiac surgery.

Methods And Results: Plasma was collected from patients before (pre-AP), 24 hours after (AP-1 d), and 5 days after cardiac surgery (AP-5 d). SAA levels were increased 16-fold in AP-1 d samples.

View Article and Find Full Text PDF

During normal aging, microglia develop an activated phenotype characterized by morphologic changes and induction of CD11b, MHC II, and other inflammatory markers. We show that macrosialin (CD68), a macrophage-specific protein, is increased by aging in selected brain regions of male C57BL/6NNia mice. In corpus callosum and striatum, macrosialin mRNA and protein increased >or=50% (24 months versus 4 months); hippocampus and cerebellum were unchanged.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI).

View Article and Find Full Text PDF

The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein.

View Article and Find Full Text PDF