Publications by authors named "Maria C Dadarlat"

Brain-machine interfaces (BMIs) aim to restore sensorimotor function to individuals suffering from neural injury and disease. A critical step in implementing a BMI is to decode movement intention from recorded neural activity patterns in sensorimotor areas. Optical imaging, including two-photon (2p) calcium imaging, is an attractive approach for recording large-scale neural activity with high spatial resolution using a minimally-invasive technique.

View Article and Find Full Text PDF

Electrical stimulation is an effective tool for mapping and altering brain connectivity, with applications ranging from treating pharmacology-resistant neurological disorders to providing sensory feedback for neural prostheses. Paramount to the success of these applications is the ability to manipulate electrical currents to precisely control evoked neural activity patterns. However, little is known about stimulation-evoked responses in inhibitory neurons nor how stimulation-evoked activity patterns depend on ongoing neural activity.

View Article and Find Full Text PDF

Brain-machine interfaces (BMIs) aim to treat sensorimotor neurological disorders by creating artificial motor and/or sensory pathways. Introducing artificial pathways creates new relationships between sensory input and motor output, which the brain must learn to gain dexterous control. This review highlights the role of learning in BMIs to restore movement and sensation, and discusses how BMI design may influence neural plasticity and performance.

View Article and Find Full Text PDF

Electrical stimulation is a highly-effective, temporally-precise technique to evoke neural activity in the brain, and thus is critically important for both research and clinical applications. Here, we set out to understand the time-course and spatial spread of neural activation elicited by electrical stimulation. By imaging the cortex of awake, chronically-implanted, transgenic mice during electrical stimulation, we found that a broad range of stimulation parameters led to widespread neural activation.

View Article and Find Full Text PDF

Assessments of the mouse visual system based on spatial-frequency analysis imply that its visual capacity is low, with few neurons responding to spatial frequencies greater than 0.5 cycles per degree. However, visually mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise.

View Article and Find Full Text PDF

Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1.

View Article and Find Full Text PDF

Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS). We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded.

View Article and Find Full Text PDF

Proprioception-the sense of the body's position in space-is important to natural movement planning and execution and will likewise be necessary for successful motor prostheses and brain-machine interfaces (BMIs). Here we demonstrate that monkeys were able to learn to use an initially unfamiliar multichannel intracortical microstimulation signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum-variance estimate of relative hand position.

View Article and Find Full Text PDF