Severe COVID-19 is associated with hyperinflammation and weak T cell responses against SARS-CoV-2. However, the links between those processes remain partially characterized. Moreover, whether and how therapeutically manipulating T cells may benefit patients are unknown.
View Article and Find Full Text PDFCluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases.
View Article and Find Full Text PDFIntracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4 T cells.
View Article and Find Full Text PDFBackground: Use of cell-based medicinal products (CBMPs) represents a state-of-the-art approach for reducing general immunosuppression in organ transplantation. We tested multiple regulatory CBMPs in kidney transplant trials to establish the safety of regulatory CBMPs when combined with reduced immunosuppressive treatment.
Methods: The ONE Study consisted of seven investigator-led, single-arm trials done internationally at eight hospitals in France, Germany, Italy, the UK, and the USA (60 week follow-up).
Although immune checkpoint blockers have yielded significant clinical benefits in patients with different malignancies, the efficacy of these therapies is still limited. Here, we show that disruption of transmembrane protein 176B (TMEM176B) contributes to CD8 T cell-mediated tumor growth inhibition by unleashing inflammasome activation. Lack of Tmem176b enhances the antitumor activity of anti-CTLA-4 antibodies through mechanisms involving caspase-1/IL-1β activation.
View Article and Find Full Text PDFOver the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS) to minimize immunological response in order to prevent graft rejection.
View Article and Find Full Text PDFCellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent.
View Article and Find Full Text PDFRetinoid-related orphan receptor gamma t (RORγt) is a master transcription factor central to type 17 immunity involving cells such as T helper 17, group 3 innate lymphoid cells or IL-17-producing γδ T cells. Here we show that the intracellular ion channel TMEM176B and its homologue TMEM176A are strongly expressed in these RORγt(+) cells. We demonstrate that TMEM176A and B exhibit a similar cation channel activity and mainly colocalise in close proximity to the trans-Golgi network.
View Article and Find Full Text PDFIn the last years, cell therapy has become a promising approach to therapeutically manipulate immune responses in autoimmunity, cancer, and transplantation. Several types of lymphoid and myeloid cells origin have been generated in vitro and tested in animal models. Their efficacy to decrease pharmacological treatment has successfully been established.
View Article and Find Full Text PDFPLoS One
December 2015
Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations.
View Article and Find Full Text PDFPreventing untoward immune responses against a specific antigen is a major challenge in different clinical settings such as gene therapy, transplantation, or autoimmunity. Following intramuscular delivery of recombinant adeno-associated virus (rAAV)-derived vectors, transgene rejection can be a roadblock to successful clinical translation. Specific immunomodulation strategies potentially leading to sustained transgene expression while minimizing pharmacological immunosuppression are desirable.
View Article and Find Full Text PDFCurr Opin Organ Transplant
February 2012
Purpose Of Review: We discuss the use of tolerogenic dendritic cells (TolDCs) as a therapeutic tool in solid organ transplantation, with particular emphasis on recent experimental and preclinical data supporting the clinical translation of TolDC therapy.
Recent Findings: TolDC have been successfully used in rodents to promote long-term allograft survival. Although most studies have focused on donor dendritic cells or donor antigen-pulsed dendritic cells, our group investigated a strategy based on the administration of autologous dendritic cells (not pulsed with donor antigens).
Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs) and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC) in a time and dose-dependent manner.
View Article and Find Full Text PDFInjection of autologous tolerogenic dendritic cells is a promising strategy to diminish the burden of harmful immunosuppression in clinical transplantation. We discuss the immunoregulatory mechanisms triggered by this approach. Tolerogenic dendritic cells have long been associated with decreased antigen-processing capacities.
View Article and Find Full Text PDFDendritic cells are the key component to regulate and coordinate adaptive immune responses, including tolerance. This overview will briefly summarize different strategies to generate tolerogenic dendritic cell and the in vivo use of these cells in experimental transplantation models. We discuss some obstacles and possible solutions including alternative strategies for the use of negative vaccination in the context of organ transplantation.
View Article and Find Full Text PDFTolerogenic dendritic cells (Tol-DCs) are critical players in physiological tolerance. Moreover, they also play a role in immune regulation both in a pathophysiological context and when used as therapeutic tools in cell therapy strategies. Here, we describe a protocol to differentiate murine Tol-DCs from bone marrow precursors in vitro.
View Article and Find Full Text PDFCurr Opin Organ Transplant
December 2010
Purpose Of Review: We discussed the use of autologous tolerogenic dendritic cell (Tol-DC) therapy in organ transplantation, with a particular emphasis on illustrating the reasons why it is a clinically relevant approach and interpreting the experimental data that support this strategy.
Recent Findings: Various parameters are critical for engineering Tol-DCs as a therapeutic tool to manipulate antigen-specific immune responses. Our group has shown that in rats, mice and nonhuman primates, bone marrow progenitors cultured with low doses of granulocyte macrophage colony-stimulating factor can generate Tol-DCs.
Despite accumulating evidence for the importance of allospecific CD8(+) regulatory T cells (Tregs) in tolerant rodents and free immunosuppression transplant recipients, mechanisms underlying CD8(+) Treg-mediated tolerance remain unclear. By using a model of transplantation tolerance mediated by CD8(+) Tregs following CD40Ig treatment in rats, in this study, we show that the accumulation of tolerogenic CD8(+) Tregs and plasmacytoid dendritic cells (pDCs) in allograft and spleen but not lymph nodes was associated with tolerance induction in vascularized allograft recipients. pDCs preferentially induced tolerogenic CD8(+) Tregs to suppress CD4(+) effector cells responses to first-donor Ags in vitro.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) display immunomodulatory properties mediated by various factors, including inducible nitric oxide synthase (iNOS). Since heme oxygenase-1 (HO-1) is a potent immunosuppressive enzyme, we tested the hypothesis that HO-1 could mediate the immunosuppressive effects of MSCs. We generated adult rat MSCs that inhibited T-cell proliferation in vitro.
View Article and Find Full Text PDFTreatment with CD40Ig results in indefinite allograft survival in a complete MHC-mismatched heart allograft model in the rat. Here we show that serial second, third, and fourth adoptive transfers of total splenocytes from CD40Ig-treated recipients into secondary recipients led to indefinite donor-specific allograft acceptance. Purification of splenocyte subpopulations from CD40Ig-treated recipients demonstrated that only the adoptively transferred CD8(+)CD45RC(low) subset resulted in donor-specific long-term survival, whereas CD8(+)CD45RC(low) T cells from naive animals did not.
View Article and Find Full Text PDFHeme oxygenase-1 (HO-1) is an intracellular enzyme that degrades heme and inhibits immune responses and inflammation in vivo. In most cell types, HO-1 is inducible by inflammatory stimuli and oxidative stress. Here we demonstrate that human monocyte-derived immature dendritic cells (iDCs) and several but not all freshly isolated rat splenic DC subsets and rat bone marrow-derived iDCs, spontaneously express HO-1.
View Article and Find Full Text PDFRecent studies suggest that particular dendritic cells (DC) subpopulations may be tolerogenic. To test the capacity of different DC subpopulations to modulate allograft rejection, we generated two distinct populations of rat bone marrow-derived DCs (BMDC) with low doses of GM-CSF and IL-4. The non-adherent population (nBMDC), which are the 'classical' DCs was able to stimulate naive allogeneic T cells and could be induced to completely mature using various stimuli.
View Article and Find Full Text PDFBackground/aims: Gene therapy for inherited liver diseases requires permanent expression of the therapeutic gene. However, in vivo liver transduction with retroviral vectors triggers an immune elimination of transduced hepatocytes. Here we investigated whether immune response could be prevented by treatment with compounds known to induce tolerance in organ transplantation: CTLA4Ig and LF-15-0195.
View Article and Find Full Text PDFBackground: Donor major histocompatibility complex (MHC) antigens play an important role in both allograft rejection and tolerance. With the use of several animal models, it has been shown that presentation of donor antigens before transplantation can lead to allograft tolerance. Vaccination of animals with a DNA plasmid encoding an antigen enables highly efficient expression of the protein in vivo.
View Article and Find Full Text PDF