Decline in declarative learning and memory performance is a typical feature of normal aging processes. Exposure of aged animals to an enriched environment (EE) counteracts this decline, an effect correlated with reduction of age-related changes in hippocampal dendritic branching, spine density, neurogenesis, gliogenesis, and neural plasticity, including its epigenetic underpinnings. Declarative memories depend on the medial temporal lobe system, including the hippocampus, for their formation, but, over days to weeks, they become increasingly dependent on other brain regions such as the neocortex and in particular the prefrontal cortex (PFC), a process known as system consolidation.
View Article and Find Full Text PDFThe influence of exposure to impoverished environments on brain development is unexplored since most studies investigated how environmental impoverishment affects adult brain. To shed light on the impact of early impoverishment on developmental trajectories of the nervous system, we developed a protocol of environmental impoverishment in which dams and pups lived from birth in a condition of reduced sensory-motor stimulation. Focusing on visual system, we measured two indexes of functional development, that is visual acuity, assessed by using Visual Evoked Potentials (VEPs), and VEP latency.
View Article and Find Full Text PDFSince Ebbinghaus' classical work on oblivion and saving effects, we know that declarative memories may become at first spontaneously irretrievable and only subsequently completely extinguished. Recently, this time-dependent path toward memory-trace loss has been shown to correlate with different patterns of brain activation. Environmental enrichment (EE) enhances learning and memory and affects system memory consolidation.
View Article and Find Full Text PDFEnvironmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development.
View Article and Find Full Text PDFThe maturation of the GABAergic system is a crucial determinant of cortical development during early postnatal life, when sensory circuits undergo a process of activity-dependent refinement. An altered excitatory/inhibitory balance has been proposed as a possible pathogenic mechanism of autism spectrum disorders (ASD). The homeobox-containing transcription factor Engrailed-2 (En2) has been associated to ASD, and En2 knockout (En2 (-/-)) mice show ASD-like features accompanied by a partial loss of cortical GABAergic interneurons.
View Article and Find Full Text PDFEnvironmental enrichment (EE) is known to enhance learning and memory. Declarative memories are thought to undergo a first rapid and local consolidation process, followed by a prolonged process of system consolidation, which consist in a time-dependent gradual reorganization of brain regions supporting remote memory storage and crucial for the formation of enduring memories. At present, it is not known whether EE can affect the process of declarative memory system consolidation.
View Article and Find Full Text PDFEarly life experiences can affect brain development, contributing to shape interindividual differences in stress vulnerability and anxiety-like behavior. In rodents, high levels of maternal care have long-lasting positive effects on the behavior of the offspring and stress response; post-weaning rearing in an enriched environment (EE) or massage counteract the negative effects of maternal separation or prenatal stressors. We recently found that insulin-like growth factor 1 (IGF-1) is a key mediator of early EE or massage on brain development.
View Article and Find Full Text PDFAmblyopia is one of the most common forms of visual impairment, arising from an early functional imbalance between the two eyes. It is currently accepted that, due to a lack of neural plasticity,amblyopia is an untreatable pathology in adults. Environmental enrichment (EE) emerged as a strategy highly effective in restoring plasticity in adult animals, eliciting recovery from amblyopia through a reduction of intracortical inhibition.
View Article and Find Full Text PDFLoss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models.
View Article and Find Full Text PDFBrain aging is characterized by functional deterioration across multiple systems, associated to a progressive decay of neural plasticity. Here, we explored environmental enrichment (EE), a condition of enhanced sensory-motor and cognitive stimulation, as a strategy to restore plasticity processes in the old brain. Visual system is one of the paradigmatic models for studying experience-dependent plasticity.
View Article and Find Full Text PDFEnvironmental enrichment strongly affects visual system maturation both at retinal and cortical levels. Which molecular pathways are activated by an enriched environment (EE) to regulate visual system development has not been clarified. Here, we show that early [postnatal day 1 (P1) to P7] insulin-like growth factor 1 (IGF-1) injections in the eyes of non-EE rat pups mimic EE effects both in increasing BDNF levels in the retinal ganglion cell layer at P10 and in determining a more adult-like retinal acuity, assessed with pattern electroretinogram at P25.
View Article and Find Full Text PDFThe influence of maternal environment on fetal development is largely unexplored, the available evidence concerns only the deleterious effects elicited by prenatal stress. Here we investigated the influence of prenatal enrichment on the early development of the visual system in the fetus. We studied the anatomical development of the rat retina, by analyzing the migration of neural progenitors and the process of retinal ganglion cell death, which exerts a key role in sculpturing the developing retinal system at perinatal ages.
View Article and Find Full Text PDFLoss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. We report that environmental enrichment in adult amblyopic rats restored normal visual acuity and ocular dominance. These effects were due to reduced GABAergic inhibition in the visual cortex, accompanied by increased expression of BDNF and reduced density of extracellular-matrix perineuronal nets, and were prevented by enhancement of inhibition through benzodiazepine cortical infusion.
View Article and Find Full Text PDFA well-known developmental event of retinal maturation is the progressive segregation of retinal ganglion cell (RGC) dendrites into a and b sublaminae of the inner plexiform layer (IPL), a morphological rearrangement crucial for the emergence of the ON and OFF pathways. The factors regulating this process are not known, although electrical activity has been demonstrated to play a role. Here we report that Environmental Enrichment (EE) accelerates the developmental segregation of RGC dendrites and prevents the effects exerted on it by dark rearing (DR).
View Article and Find Full Text PDFIn the mammalian visual system, retinal ganglion cell (RGC) projections from each eye, initially intermixed within the dorsal-lateral geniculate nucleus (dLGN), become segregated during the early stages of development, occupying distinct eye-specific layers. Electrical activity has been suggested to play a role in this process; however, the cellular mechanisms underlying eye-specific segregation are not yet defined. It is known that electrical activity is among the strongest activators of the extracellular signal-regulated kinase (ERK) pathway.
View Article and Find Full Text PDFThe actions of neurotrophic factors are classically thought to be mediated by their retrograde transport from target tissues to the cell bodies. There is now evidence that specific trophic factors are trafficked anterogradely along peripheral and central axons and released to postsynaptic cells. This review focuses on recent experiments that demonstrate the involvement of the anterograde transfer of neurotrophic factors in various physiological processes, including the regulation of developmental neuronal death, the modulation of synaptic transmission, and the control of axonal and dendritic architecture.
View Article and Find Full Text PDFNeurotrophins have been implicated in regulating many aspects of neuronal development and plasticity, including dendritic and axonal elaboration, by acting primarily as target derived trophic factors. Recently, we have shown that brain-derived neurotrophic factor (BDNF) is produced by retinal ganglion cells (RGCs) and travels in an anterograde direction along the optic nerve in neonatal rats. Here, we have assessed whether the anterogradely transported BDNF plays a role in shaping the retinogeniculate connectivity during development.
View Article and Find Full Text PDFLesions of the mammalian visual cortex cause the retrograde degeneration of the thalamic neurons projecting to the damaged cortex. The proto-oncogene bcl-2 is known to inhibit neuronal apoptosis induced by a variety of noxious stimuli and preserve the functional integrity of the injured cells. Here we have tested whether the overexpression of bcl-2 via adeno-associated virus (AAV) vectors is able to protect the neurons in the lateral geniculate nucleus after visual cortex ablation in adult rats.
View Article and Find Full Text PDF