We present a new integrated experimental and modeling effort that assesses the intrinsic sensitivity of energetic materials based on their reaction rates. The High Explosive Initiation Time (HEIT) experiment has been developed to provide a rapid assessment of the high-temperature reaction kinetics for the chemical decomposition of explosive materials. This effort is supported theoretically by quantum molecular dynamics (QMD) simulations that depict how different explosives can have vastly different adiabatic induction times at the same temperature.
View Article and Find Full Text PDFPentaerythritol tetranitrate (PETN) has been used extensively in commercial detonators and other explosive applications for many decades. Here, we show the results of a comprehensive 1.5 year aging study of PETN in commercial detonators, addressing batch-to-batch variations, surface area changes, and comparisons of aged loose powders side-by-side with identically aged detonators.
View Article and Find Full Text PDFThere are few techniques available for chemists to obtain time-to-explosion data with known temperature inputs at the early stages of the design and synthesis of new explosives. In the 1960s, a technique was developed to rapidly heat milligram-quantities of confined explosives to ∼1000 K on microsecond timescales. Wenograd [Trans.
View Article and Find Full Text PDF