Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC.
View Article and Find Full Text PDFAngiotensin I-converting enzyme (ACE) plays a key role in the renin-angiotesin aldosterone cascade. We analysed the secondary structure and structural organization of a purified 65kDa N-domain ACE (nACE) from Wistar rat mesangial cells, a 90 kDa nACE from spontaneously hypertensive rats and a 130 kDa somatic ACE. The C-terminal alignment of the 65 kDa nACE with rat ACE revealed that the former was truncated at Ser(482), and the sequence of the 90 kDa nACE ended at Pro(629).
View Article and Find Full Text PDFHigh glucose (HG) increases angiotensin II (AngII) generation in mesangial cells (MC). Chymase, an alternative AngII-generating enzyme, is upregulated in the glomeruli of diabetic kidneys. In this study, we examined AngII synthesis by human MC via angiotensin-converting enzyme (ACE)-dependent and chymase-dependent pathways under normal glucose (NG, 5 mM) and HG (30 mM) conditions.
View Article and Find Full Text PDFExtracts from various organs of 25 plants of Brazilian traditional medicine were assayed with respect to their anti-bacterial activities against Escherichia coli, a susceptible strain of Staphylococcus aureus and two resistant strains of Staphylococcus aureus harbouring the efflux pumps NorA and MsrA. Amongst the 49 extracts studied, 14 presented anti-bacterial activity against Staphylococcus aureus, including the ethanolic extracts from the rhizome of Jatropha elliptica, from the stem barks of Schinus terebinthifolius and Erythrina mulungu, from the stems and leaves of Caesalpinia pyramidalis and Serjania lethalis, and from the stem bark and leaves of Lafoensia pacari. The classes of compounds present in the active extracts were determined as a preliminary step towards their bioactivity-guided separation.
View Article and Find Full Text PDFBackground: Different HPLC methods have been developed and used to determined sirolimus blood concentrations. These methods show different performance characteristics, mostly related to peak interference, recovery, assay sensitivity, and turnaround times.
Objective: We adapted, improved, and validated an HPLC method with UV detection for measurement of sirolimus in whole blood clinical samples.