The role of machine learning (a part of artificial intelligence-AI) in the diagnosis and treatment of various types of oncology is steadily increasing. It is expected that the use of AI in oncology will speed up both diagnostic and treatment planning processes. This review describes recent applications of machine learning in oncology, including medical image analysis, treatment planning, patient survival prognosis, and the synthesis of drugs at the point of care.
View Article and Find Full Text PDFThe development of artificial intelligence (AI) has revolutionized medical care in recent years and plays a vital role in a number of areas, such as diagnostics and forecasting. In this review, we discuss the most promising areas of AI application to the field of bone tissue engineering and prosthetics, which can drastically benefit from AI-assisted optimization and patient personalization of implants and scaffolds in ways ranging from visualization and real-time monitoring to the implantation cases prediction, thereby leveraging the compromise between specific architecture decisions, material choice, and synthesis procedure. With the emphasized crucial role of accuracy and robustness of developed AI algorithms, especially in bone tissue engineering, it was shown that rigorous validation and testing, demanding large datasets and extensive clinical trials, are essential, and we discuss how through developing multidisciplinary cooperation among biology, chemistry with materials science, and AI, these challenges can be addressed.
View Article and Find Full Text PDFIn the field of intelligent surface inspection systems, particular attention is paid to decision making problems, based on data from different sensors. The combination of such data helps to make an intelligent decision. In this research, an approach to intelligent decision making based on a data integration strategy to raise awareness of a controlled object is used.
View Article and Find Full Text PDFDuring the steel pipeline installation, special attention is paid to the butt weld control performed by fusion welding. The operation of the currently popular automated X-ray and ultrasonic testing complexes is associated with high resource and monetary costs. In this regard, this work is devoted to the development of alternative and cost-effective means of preliminary quality control of the work performed based on the visual testing method.
View Article and Find Full Text PDFArtificial intelligence (AI) approaches continue to spread in almost every research and technology branch. However, a simple adaptation of AI methods and algorithms successfully exploited in one area to another field may face unexpected problems. Accelerating the discovery of new functional materials in chemical self-driving laboratories has an essential dependence on previous experimenters' experience.
View Article and Find Full Text PDFInnovative development in the energy and chemical industries is mainly dependent on advances in the accelerated design and development of new functional materials. The success of research in new nanocatalysts mainly relies on modern techniques and approaches for their precise characterization. The existing methods of experimental characterization of nanocatalysts, which make it possible to assess the possibility of using these materials in specific chemical reactions or applications, generate significant amounts of heterogeneous data.
View Article and Find Full Text PDFInnovations often play an essential role in the acceleration of the new functional materials discovery. The success and applicability of the synthesis results with new chemical compounds and materials largely depend on the previous experience of the researcher himself and the modernity of the equipment used in the laboratory. Artificial intelligence (AI) technologies are the next step in developing the solution for practical problems in science, including the development of new materials.
View Article and Find Full Text PDF