Publications by authors named "Maria Bourkaltseva"

Unlabelled: During infection, the giant phiKZ phage forms a specialized structure at the center of the host cell called the phage nucleus. This structure is crucial for safeguarding viral DNA against bacterial nucleases and for segregating the transcriptional activities of late genes. Here, we describe a morphological entity, the early phage infection (EPI) vesicle, which appears to be responsible for earlier gene segregation at the beginning of the infection process.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses the history and characteristics of phiKZ, the first giant bacteriophage known to infect bacteria.
  • It highlights its unique DNA packaging structure and the distinct features that allow for a wide range of lytic activity and visible traits in colonies.
  • The study emphasizes the significance of phiKZ and similar giant phages in the context of phage therapy and their commercial applications.
View Article and Find Full Text PDF

Transposable phages, also called saltoviruses, of which the phage Mu is the reference, are temperate phages that multiply their genome through replicative transposition at multiple sites in their host chromosome. The viral genome is packaged together with host DNA at both ends. In the present work, genome sequencing of three transposable phages, HW12, 2P1, and Ab30, incidentally gave us access to the location of thousands of replicative integration sites and revealed the existence of a variable number of hotspots.

View Article and Find Full Text PDF

This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria.

View Article and Find Full Text PDF

The complete genome of the Pseudomonas aeruginosa bacteriophage PM105 is 39,593 bp long. The phage belongs to the B3 family of transposable Mu-like phages, as confirmed by the presence of bacterial DNA joined to the phage genome ends. PM105, together with other B3-like phages, form a newly arising species.

View Article and Find Full Text PDF

Recently we have accomplished the entire DNA sequence of bacteriophage phiKZ, a giant virus infecting Pseudomonas aeruginosa. The 280334-bp of phiKZ genome is a linear, circularly permutated and terminally redundant, AT-rich dsDNA molecule that contains no sites for NotI, PstI, SacI, SmaI, XhoI and XmaIII endonucleases. Limited homology to other bacteriophages on the DNA and protein levels indicated that phiKZ represents a distinct branch of the Myoviridae family.

View Article and Find Full Text PDF

Bacteriophage phiKZ is a giant virus that efficiently infects Pseudomonas aeruginosa strains pathogenic to human and, therefore, it is attractive for phage therapy. We present here the complete phiKZ genome sequence and a preliminary analysis of its genome structure. The 280,334 bp genome is a linear, circularly permutated and terminally redundant, A+T-rich double-stranded DNA molecule.

View Article and Find Full Text PDF