Publications by authors named "Maria Bobrova"

Volumetric muscle loss (VML) is a serious problem in healthcare that requires innovative solutions. Collagen and its derivatives are promising biomaterials for muscle tissue replacement due to their high biocompatibility, biodegradability, and lack of toxicity. This review comprehensively discusses collagen from various sources, its structural characteristics, cross-linking methods to obtain hydrogels, and approaches to incorporating various therapeutic molecules to create a biocomposite system with controlled release.

View Article and Find Full Text PDF

. In many studies over the past decade, scientists have made a connection between the composition of gut microbiota and human health. A number of publications have shown that gut bacteria are involved in many metabolic and physiological processes of the organism.

View Article and Find Full Text PDF

Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy.

View Article and Find Full Text PDF

The gut microbiota plays an important role in maintaining human health, as well as in the development of various pathologies, as indicated by a large amount of research. One of the manifestations of an imbalance in the gut microbiome composition is the appearance of various diseases or immune reactions, in particular, atopic dermatitis (AD) and/or food allergies (FA). In this research, using 16S NGS sequencing, it was found that the gut microbiome of children with food allergies and children with atopic dermatitis can be characterized as having higher inflammatory potential.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach.

View Article and Find Full Text PDF

The development of advanced biomaterials and constructs for accelerated recovery of damaged tissues is a key direction in regenerative medicine. Biocompatible scaffolds based on natural biopolymers are widely used for these tasks. Organ decellularization enables obtaining a cell-free extracellular matrix (ECM) with preserved composition and biological activity.

View Article and Find Full Text PDF

To continue progress in the treatment of cardiovascular disease, there is a need to improve the overall understanding of the processes that contribute to the pathogenesis of cardiovascular disease (CVD). Exploring the role of gut microbiota in various heart diseases is a topic of great interest since it is not so easy to find such reliable connections despite the fact that microbiota undoubtedly affect all body systems. The present study was conducted to investigate the composition of gut microbiota in patients with atherosclerotic cardiovascular disease (ASCVD) and heart failure syndromes with reduced ejection fraction (HFrEF) and HF with preserved EF (HFpEF), and to compare these results with the microbiota of individuals without those diseases (control group).

View Article and Find Full Text PDF
Article Synopsis
  • The research focused on creating electrospun scaffolds using silk fibroin from silkworms and two recombinant spider silk proteins, analyzing their structural and biological properties.
  • Scanning electron microscopy revealed similar structures among the scaffolds, with an average fiber diameter of 315 nm and high porosity at 94.5%.
  • The scaffolds demonstrated non-cytotoxicity, excellent cytocompatibility, and significantly improved wound healing in a rat model, reducing healing time by 19 days without causing inflammation.
View Article and Find Full Text PDF

A comparative analysis of the structure and biological properties of silk fibroin constructions was performed. Three groups of constructions were obtained: films obtained by casting an aqueous solution of silk fibroin and electrospun microfibrous scaffolds based on silk fibroin, with the addition of 30% gelatin per total protein weight. The internal structures of the films and single fibers of the microfibrous scaffolds consisted of densely packed globule structures; the surface area to volume ratios and volume porosities of the microfibrous scaffolds were calculated.

View Article and Find Full Text PDF

Organ decellularization is one of the promising technologies of regenerative medicine, which allows obtaining cell-free extracellular matrix (ECM), which provide preservation of the composition, architecture, vascular network and biological activity of the ECM. The method of decellularization opens up wide prospects for its practical application not only in the field of creating full-scale bioengineered structures, but also in the manufacture of vessels, microcarriers, hydrogels, and coatings. The main goal of our work was the investigation of structure and biological properties of lyophilized decellularized Wistar rat liver fragments (LDLFs), as well as we assessed the regenerative potential of the obtained ECM.

View Article and Find Full Text PDF