Masking the bitter taste of foods is one of the key strategies to improve their taste and palatability, particularly in the context of clean labeling, where natural compounds are preferred. Despite the demand, the availability of natural bitter-masking compounds remains limited. Here, we identified the bitter-masking compound 4'-demethyl-3,9-dihydroeucomin () isolated from the resin of by means of an activity-guided in vivo (sensory bitterness rating of quinine) and in vitro (cell-based bitter response assays) approach.
View Article and Find Full Text PDFStarting from previous structure-activity relationship studies of taste modifiers based on homoeriodictyol, dihydrochalcones, deoxybenzoins, and trans-3-hydroxyflavones as obvious analogues were investigated for their masking effect against caffeine. The most active compounds of the newly investigated taste modifiers were phloretin, the related dihydrochalcones 3-methoxy-2',4,4'-trihydroxydihydrochalcone and 2',4-dihydroxy-3-methoxydihydrochalcone, and the deoxybenzoin 2-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)ethanone. Starting with the whole set of compounds showing activity >22%, a (Q)SAR pharmacophore model for maskers of caffeine bitterness was calculated to explain the structural requirements.
View Article and Find Full Text PDFIn order to find new flavor modifiers, various short chain gingerdione derivatives were synthesized as structural analogues of the known bitter masker homoeriodictyol and evaluated by a sensory panel for masking and sweetness enhancing activities. 1-(4-Hydroxy-3-methoxyphenyl)hexa-3,5-dione ([2]-gingerdione) and the homologue 1-(4-hydroxy-3-methoxyphenyl)hepta-3,5-dione ([3]-gingerdione) at concentration ranges 50-500 mg kg (-1) showed the most promising masking activity of 20-30% against bitterness of a 500 mg kg (-1) aqueous caffeine solution. Additionally, both compounds were able to reduce the bitterness of a 5 mg kg (-1) quinine solution by about 20%; however, the bitter tastes of salicine, the model peptide H-Leu-Trp-OH, and KCl solutions were not reduced.
View Article and Find Full Text PDFStarting from the known bitter-masking flavanones eriodictyol and homoeriodictyol from herba santa some structurally related hydroxybenzoic acid amides of benzylamines were synthesized and evaluated as masking agents toward bitterness of caffeine by sensory methods. The closest structural relatives of homoeriodictyol, the hydroxybenzoic acid vanillylamides 5-9, were the most active and were able to reduce the bitterness of a 500 mg L(-1) caffeine solution by about 30% at a concentration of 100 mg L(-1). 2,4-Dihydroxybenzoic acid vanillylamide 7 showed a clear dose-dependent activity as inhibitor of the bitter taste of caffein between 5 and 500 mg L(-1).
View Article and Find Full Text PDF