Publications by authors named "Maria Begonia"

Exudates produced from Bermuda grass roots were collected in deionized water from sterilized Bermuda grass sod at 3-day intervals over a period of 15 days. Exudates were analyzed for total organic carbon, and characterized via Fourier Transform Infrared Spectroscopy. Exudate samples were adjusted to pH values of 4.

View Article and Find Full Text PDF

Remediation of lead-contaminated soil is significant due to the inherent toxicity of lead (Pb), and the quantity of Pb discharged into the soil. One of the most cost-effective and environmentally sound technologies for the cleanup of metal-contaminated soils is through the use of plants. While much is known about the ecological evolution of metal tolerance in plants, the physiological, biochemical, and genetic mechanisms of tolerance is not well understood in the majority of resistant ecotypes such as the legume, Sesbania exaltata Raf.

View Article and Find Full Text PDF

Lead (Pb) is a common environmental contaminant found in soils. Unlike other metals, Pb has no biological role, and is potentially toxic to microorganisms. Effects of low (1 ppm) and high (500-2000) levels of lead (Pb) upon the soil microbial community was investigated by the PCR/DGGE analysis of the 16S and nirK gene markers, indicative of general microbial community and denitrifying community, respectively.

View Article and Find Full Text PDF

Lead (Pb) is recognized as one of the most pervasive environmental health concerns in the industrialized world. While there has been a substantial reduction in the use of Pb in gasoline, water pipes, and Pb-based residential paint, residual Pb from their use is still in the environment and constitutes an important source of Pb in the atmosphere, water, and soil. Soil acts as a sink for these anthropogenic sources of Pb, accumulating the deposits over time in the upper 2 - 5 cm of undisturbed soil.

View Article and Find Full Text PDF

Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants.

View Article and Find Full Text PDF

To assess the effectiveness of anion exchange resins (Dowex M43 and Dowex monosphere 66) in neutralization and detoxification of an acid hydrolyzate solution, a fermentation medium containing inhibitors was inoculated with Saccharomyces cerevisiae. When treated with resins at a 1:1 ratio (vol:wt) for up to 20 min, 55-67% of furan and more than 95% of phenolic compounds were removed. Ethanol fermentation activity in resin-treated fermentation medium was the same as the control.

View Article and Find Full Text PDF

Lead (Pb) is one of the most toxic metals in the environment and may cause drastic morphological and physiological deformities in Ipomoea lacunosa. The goal of this research was to evaluate some morphological and physiological responses of morning glory grown on a Pb- and chelate-amended soil. Soil samples were analyzed, at Mississippi State University Soil Laboratory, for physico-chemical parameters, such as soil texture (73% sand, 23% silt, 4.

View Article and Find Full Text PDF