Publications by authors named "Maria Beatriz de la Mora"

In this work, surface-enhanced Raman scattering substrates with triangular silver nanoprisms (AgNPrs) dropped on copper hydroxide nanowires (CuOHNWs) were evaluated. AgNPrs were synthesized in colloidal solution using Ag nitrate, polyvinylpyrrolidone, trisodium citrate dihydrate, hydrogen peroxide, and sodium borohydride (NaBH). A set of five solutions with volume percentages from 0.

View Article and Find Full Text PDF

Arterial hypertension (HTN) is a global public health concern and an important risk factor for cardiovascular diseases and renal failure. We previously reported overexpression of ENaC on the plasma membrane of human platelets is a hallmark of HTN. In this double-blinded study of an open population ( = 167), we evaluated the sensitivity and specificity of a diagnostic assay based on gold nanoparticles (AuNPs) conjugated to an antibody against epithelial sodium channel (ENaC) expressed on platelets, which is detected using a fluorescent anti-ENaC secondary antibody and spectrofluorometry.

View Article and Find Full Text PDF

Silica nanoparticles (SiO-NP) are an option as drug carriers due to their biodegradability, biocompatibility, and capacity to bind themselves to other compounds. However, until now, the effect of these particles on the brain when neurodegeneration occurs is unknown. Hence, this work focused on the in vivo evaluation of the neurotoxic effects of SiO-NP when oxidative and inflammation are present during the development of Parkinson's disease.

View Article and Find Full Text PDF

Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region.

View Article and Find Full Text PDF