Alu elements are short, interspersed elements located throughout the genome, playing a role in human diversity, and occasionally causing genetic diseases. Here, we report a novel Alu insertion causing Mowat-Wilson syndrome, a rare neurodevelopmental disorder, in an 8-year-old boy displaying the typical clinical features for Mowat-Wilson syndrome. The variant was not initially detected in genome sequencing data, but through deep phenotyping, which pointed to only one plausible candidate gene, manual inspection of genome sequencing alignment data enabled us to identify a de novo heterozygous Alu insertion in exon 8 of the ZEB2 gene.
View Article and Find Full Text PDFThe three major collagen VI genes: COL6A1, COL6A2, and COL6A3 encode microfibrillar components of extracellular matrices in multiple tissues including muscles and tendons. Pathogenic variants in the collagen VI genes cause collagen VI-related dystrophies representing a continuum of conditions from Bethlem myopathy at the milder end to Ullrich congenital muscular dystrophy at the more severe end. Here we describe a pathogenic variant in the COL6A1 gene (NM_001848.
View Article and Find Full Text PDFIn most patients with intellectual disability (ID), the etiology is unknown, but lately several de novo variants have been associated with ID. One of the involved genes, CUX2, has twice been reported to be affected by a de novo variant c.1768G>A; p.
View Article and Find Full Text PDFGhrelin is a peptide hormone produced mainly in the gastrointestinal tract known to regulate several physiological functions including gut motility, adipose tissue accumulation and hunger sensation leading to increased bodyweight. Studies have found a correlation between the plasma levels of thyroid hormones and ghrelin, but an effect of ghrelin on the human thyroid has never been investigated even though ghrelin receptors are present in the thyroid. The present study shows a ghrelin-induced decrease in the thyroid-stimulating hormone (TSH)-induced production of thyroglobulin and mRNA expression of thyroperoxidase in a primary culture of human thyroid cells obtained from paranodular tissue.
View Article and Find Full Text PDF