Millimeter-length cables of bacteria were discovered growing along a graphite-rod electrode serving as an anode of a microbial electrolysis cell (MEC). The MEC had been inoculated with a culture of Fe-reducing microorganisms enriched from a polluted river sediment (Reconquista river, Argentina) and was operated at laboratory controlled conditions for 18 days at an anode poised potential of 240 mV (vs. Ag/AgCl), followed by 23 days at 480 mV (vs.
View Article and Find Full Text PDFOligosaccharyltransferase (OST) complex catalyzes the N-glycosylation of nascent polypeptides in the endoplasmic reticulum. Glycoproteins are critical for normal cell-cell interactions, especially during an immune response. Abnormal glycosylation is an insignia of several inflammatory diseases.
View Article and Find Full Text PDFIn this work, we report a simple and scalable method to produce high efficiency 3D graphene-based electrodes (GH) for bioelectrochemical systems. GH were obtained by self-assembly of graphene oxide, through slow reduction with ascorbic acid over conductive mesh-works (carbon cloth and stainless-steel). The GH structure and composition were characterised by electron microscopy (SEM) and spectroscopy (FTIR and Raman), whereas the electrodes' performance was tested by chronoamperometry and cyclic voltammetry in a microbial electrolysis cell (MEC) inoculated with a pure culture of .
View Article and Find Full Text PDFThe computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism.
View Article and Find Full Text PDFBackground: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective.
View Article and Find Full Text PDFPhospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae.
View Article and Find Full Text PDFUDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma.
View Article and Find Full Text PDFTo analyze immunomodulating effects related to parity status, we studied trophoblast invasion grade, placental expression and systemic concentration of VEGF and its receptor Flt-1 in normal fertile (CBA/JxBALB/c) mice and abortion-prone (CBA/JxDBA/2) H-2(d)xH-2(k) mice. BALB/c or DBA/2 mated CBA/J females were, respectively, divided into the following groups: primiparous young (3.0+/-0.
View Article and Find Full Text PDF