In this study, the effect of hydroxypropyl methylcellulose (HPMC) and gum Arabic (GA) edible coatings amended with 0.2% geraniol (GE) were evaluated for the control of brown rot, caused by , on artificially inoculated plums ( Lindl., cv.
View Article and Find Full Text PDFNovel pectin-based, antifungal, edible coatings (ECs) were formulated by the addition of natural extracts or essential oils (EOs), and their ability to control green mold (GM), caused by , and preserve postharvest quality of 'Valencia' oranges was evaluated. , (CN), (MY) EOs, eugenol (EU), geraniol (GE), vanillin, and propolis extract were selected as the most effective antifungal agents against in in vitro assays. Pectin-beeswax edible coatings amended with these antifungals were applied to artificially inoculated oranges to evaluate GM control.
View Article and Find Full Text PDFThe sulfur-containing salts, classified as food additives, sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS), and aluminum potassium sulfate (AlPS), were evaluated for their activity against , , and , the most economically important fungal pathogens causing postharvest disease of stone fruit. In in vitro tests with potato dextrose agar (PDA) Petri dishes amended with different concentrations of the salts (0, 10, 20, 30, 50, and 100 mM), SMBS and PMBS at all concentrations, AlS above 20 mM, and AlPS above 30 mM, completely inhibited the mycelial growth of the three fungi after incubation at 25 °C for up to 10 days. In in vivo primary screenings with artificially inoculated nectarines, aqueous solutions of the four salts reduced the incidence and severity of brown rot (BR) at concentrations of 10 and 50 mM, whereas only AlS and AlPS reduced Rhizopus rot (RR), and none of the salts was effective against sour rot (SR).
View Article and Find Full Text PDFBackground: Two edible coating (EC) emulsions based on potato starch (F6 and F10) alone or formulated with sodium benzoate (SB, 2% w/w) (F6/SB and F10/SB) were evaluated to maintain postharvest quality of cold-stored 'Fino' lemons and control sour rot on lemons artificially inoculated with Geotrichum citri-aurantii. Previous research showed the potential of these ECs to improve the storability of 'Orri' mandarins and reduce citrus green and blue molds caused by Penicillum digitatum and Penicillium italicum, respectively.
Results: The coatings F6/SB and F10/SB significantly reduced sour rot incidence and severity compared to uncoated control samples on lemons incubated at 28 °C for 4 and 7 days.
Sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS) and aluminum potassium sulfate (AlPS), common sulfur-containing salts used as food additives, were evaluated for their antifungal activity against Penicillium digitatum, Penicillium italicum and Geotrichum citri-aurantii, the most economically important pathogens causing postharvest diseases of citrus fruits. In vitro radial mycelial growth was measured on potato dextrose agar (PDA) Petri dishes amended with five different concentrations of the salts (10, 20, 30, 50, 100 mM) after 7 d of incubation at 25 °C. SMBS and PMBS at all concentrations, and AIS and AIPS above 20 mM, completely inhibited the growth of these fungi.
View Article and Find Full Text PDFA large amount of GRAS (generally recognized as safe) salts and concentrations were evaluated in in vitro tests (inhibition of mycelial growth on PDA dishes) against Lasiodiplodia theobromae, the causal agent of citrus Diplodia stem-end rot. Ammonium carbonate (AC, 0.2%), potassium sorbate (PS, 2.
View Article and Find Full Text PDFProcessing of fruits and vegetables generates physiological stresses in the still living cut tissue, leading to quality deterioration and shorter shelf life as compared with fresh intact produces. Several strategies can be implemented with the aim to reduce the rate of deterioration of fresh-cut commodities. Such strategies include low temperature maintenance from harvest to retail and the application of physical and chemical treatments such as modified atmosphere packaging (MAP) with low O and high CO levels and antioxidant dips.
View Article and Find Full Text PDFThe combined effect of antibrowning dips and controlled atmosphere storage on fresh-cut "Rojo Brillante" persimmon quality was investigated. Persimmon slices were dipped in 10 g L ascorbic acid, 10 g L citric acid or water and were stored in different controlled atmospheres at 5 ℃. Controlled atmosphere conditions were 21 kPa O + 10 kPa CO (Atm-B), 21 kPa O + 20 kPa CO (Atm-C), 5 kPa O + 10 kPa CO (Atm-D) and 5 kPa O in the absence of CO (Atm-E).
View Article and Find Full Text PDFBackground: The greatest hurdle to the commercial marketing of fresh-cut fruits is related to their higher susceptibility to enzymatic browning, tissue softening, and microbial growth. The aim of this study was to test the efficacy of a pectin-based edible coating and low oxygen modified atmosphere packaging (MAP) to control enzymatic browning and reduce microbial growth of fresh-cut 'Rojo Brillante' persimmon. The survival of Escherichia coli, Salmonella enteritidis and Listeria monocytogenes artificially inoculated on fresh-cut fruit was also assessed.
View Article and Find Full Text PDFTo prevent enzymatic browning of fresh-cut 'Rojo Brillante' persimmon, different combinations of ascorbic acid (AA) and citric acid (CA) with calcium chloride (CaCl) were tested in fruit harvested at two maturity stages (MS1 and MS2). Color, firmness, sensory quality, total vitamin C, radical scavenging activity, total phenolic content, and carotenoids were evaluated over nine days of storage at 5 ℃. Antibrowning dips reduced enzymatic browning if compared with the control samples.
View Article and Find Full Text PDFTo better understand the tolerance of strawberries (Fragaria vesca L.) to high CO2 in storage atmospheres, fermentation and cellular damage were investigated. Fruits were stored for 3 and 6 days at 0 °C in the presence of different CO2 levels (0, 20, or 40%) with 20% O2.
View Article and Find Full Text PDFCommon food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.
View Article and Find Full Text PDFThe antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.
View Article and Find Full Text PDFBackground: Citrus fruit represent an important source of vitamin C, as well as other bioactive compounds. Edible coatings have the potential to extend shelf life of citrus by providing a semi-permeable barrier to water and gases, which depends on coating composition, solid content (SC), and cultivar. However, little is known about the effect of coatings on citrus nutritional quality.
View Article and Find Full Text PDFEdible composite coatings based on hydroxypropyl methylcellulose (HPMC), hydrophobic components (beeswax and shellac), and food preservatives with antifungal properties were evaluated on "Ortanique" mandarins during long-term cold storage. Selected food preservatives included potassium sorbate (PS), sodium benzoate (SB), sodium propionate (SP), and their mixtures. Intact mandarins or mandarins artificially inoculated with the pathogens Penicillium digitatum and Penicillium italicum, the causal agents of citrus postharvest green (GM) and blue (BM) molds, respectively, were coated and stored up to 8 wk at 5 °C + 1 wk of shelf-life at 20 °C.
View Article and Find Full Text PDFEdible composite coatings based on hydroxypropyl methylcellulose (HPMC), lipid components (beeswax and shellac), and food preservatives with antifungal properties were evaluated in vivo on clementine mandarins cv. Clemenules, hybrid mandarins cv. Ortanique, and oranges cv.
View Article and Find Full Text PDFNew hydroxypropyl methylcellulose (HPMC)-lipid edible composite films containing low-toxicity chemicals with antifungal properties were developed. Tested chemicals were mainly salts of organic acids, salts of parabens, and mineral salts, classified as food additives or generally recognized as safe (GRAS) compounds. Selected films containing food preservatives were used for in vitro evaluation (disk diameter test) of their antifungal activity against Penicillium digitatum (PD) and Penicillium italicum (PI), the most important postharvest pathogens of fresh citrus fruit.
View Article and Find Full Text PDFThe objective of this work was to investigate the effect of fatty acid (FA) type and content on mechanical properties, water vapor permeability and oxygen permeability of hydroxypropyl methycellulose (HPMC)-beeswax (BW) stand-alone edible films. The effect of these films formed as coatings on the postharvest quality of 'Ortanique' mandarins was also studied. Selected FAs were stearic acid (SA), palmitic acid (PA), and oleic acid (OA), using BW/FA ratios of 1:0.
View Article and Find Full Text PDFThe effect of the composition of hydroxypropyl methylcellulose (HPMC)-beeswax (BW) edible coatings on stand-alone film properties and on postharvest quality of coated 'Angeleno' plums was studied. Glycerol (G) and mannitol (M) were tested as plasticizers at two different plasticizer/HPMC ratios (100:1 and 300:1 molar basis). BW content was 20 or 40% (dry basis).
View Article and Find Full Text PDF