Publications by authors named "Maria Asuncion Campanero-Rhodes"

Flavobacterium strains exert a substantial influence on roots and leaves of plants. However, there is still limited understanding of how the specific interactions between Flavobacterium and their plant hosts are and how these bacteria thrive in this competitive environment. A crucial step in understanding Flavobacterium - plant interactions is to unravel the structure of bacterial envelope components and the molecular features that facilitate initial contact with the host environment.

View Article and Find Full Text PDF

is an opportunistic bacterium that frequently colonizes the nasopharynx and gastrointestinal tract and can also cause severe infections when invading other tissues, particularly in immunocompromised individuals. Moreover, variants exhibiting a hypermucoviscous (HMV) phenotype are usually associated with hypervirulent strains that can produce invasive infections even in immunocompetent individuals. Major carbohydrate structures displayed on the surface are the polysaccharide capsule and the lipopolysaccharide, which presents an O-polysaccharide chain in its outermost part.

View Article and Find Full Text PDF

Lectins from fruiting bodies are a diverse group of sugar-binding proteins from mushrooms that face the biologically relevant challenge of discriminating self- from non-self carbohydrate structures, therefore providing a basis for an innate defence system. Such a system entails both detection and destruction of invaders and/or feeders, and in contrast to more complex organisms with immense immune systems, these two functions normally rely on multitasking lectins, namely, lectins with different functional modules. Here, we present a novel fungal lectin, LBL, from the basidiomycete Laccaria bicolor.

View Article and Find Full Text PDF

The surface of bacteria displays diverse carbohydrate structures that may significantly differ among bacteria with the same cell wall architecture and even among strains of a given bacterial species. These structures are often recognized by lectins of the innate immune system for triggering defense responses, although some bacterial pathogens exploit recognition by host lectins for favoring infection. Bacterial microarrays are a useful tool for profiling accessible bacterial surface glycans and for exploring their recognition by innate immune lectins.

View Article and Find Full Text PDF

Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens.

View Article and Find Full Text PDF

Bacterial surfaces are decorated with distinct carbohydrate structures that may substantially differ among species and strains. These structures can be recognized by a variety of glycan-binding proteins, playing an important role in the bacteria cross-talk with the host and invading bacteriophages, and also in the formation of bacterial microcolonies and biofilms. In recent years, different microarray approaches for exploring bacterial surface glycans and their recognition by proteins have been developed.

View Article and Find Full Text PDF

Siglecs are receptors on cells of the immune, haemopoietic, and nervous systems that recognize sialyl-glycans with differing preferences for sialic acid linkage and oligosaccharide backbone sequence. We investigate here siglec binding using microarrays of Lewis(x) (Le(x))- and 3'-sialyl-Le(x)-related probes with different sulphation patterns. These include sulphation at position 3 of the terminal galactose of Le(x), position 6 of the galactose of Le(x) and sialyl-Le(x), position 6 of N-acetylglucosamine of Le(x) and sialyl-Le(x), or both positions of sialyl-Le(x).

View Article and Find Full Text PDF

Dectin-1 is a C-type lectin-like receptor on leukocytes that mediates phagocytosis and inflammatory mediator production in innate immunity to fungal pathogens. Dectin-1 lacks residues involved in calcium ligation that mediates carbohydrate-binding by classical C-type lectins; nevertheless, it binds zymosan, a particulate beta-glucan-rich extract of Saccharomyces cerevisiae, and binding is inhibited by polysaccharides rich in beta1,3- or both beta1,3- and beta1,6-linked glucose. The oligosaccharide ligands on glucans recognized by Dectin-1 have not yet been delineated precisely.

View Article and Find Full Text PDF

Spermadhesins are a family of 12-16 kDa proteins with a single CUB domain. PSP-I and PSP-II, the most abundant boar spermadhesins, are present in seminal plasma as a noncovalent heterodimer. Dimerization markedly affects the binding ability of the subunits.

View Article and Find Full Text PDF