Publications by authors named "Maria Armaka"

miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that expression is upregulated in RA SFs.

View Article and Find Full Text PDF

Lung cancer and chronic lung diseases impose major disease burdens worldwide and are caused by inhaled noxious agents including tobacco smoke. The cellular origins of environmental-induced lung tumors and of the dysfunctional airway and alveolar epithelial turnover observed with chronic lung diseases are unknown. To address this, we combined mouse models of genetic labeling and ablation of airway (club) and alveolar cells with exposure to environmental noxious and carcinogenic agents.

View Article and Find Full Text PDF

The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters.

View Article and Find Full Text PDF

A number of human diseases, such as arthritis and atherosclerosis, include characteristic pathology in specific anatomical locations. Here we show transcriptomic differences in synovial fibroblasts from different joint locations and that HOX gene signatures reflect the joint-specific origins of mouse and human synovial fibroblasts and synovial tissues. Alongside DNA methylation and histone modifications, bromodomain and extra-terminal reader proteins regulate joint-specific HOX gene expression.

View Article and Find Full Text PDF

Objectives: Spondyloarthritides (SpA) are characterised by both peripheral and axial arthritis. The hallmarks of peripheral SpA are the development of enthesitis, most typically of the Achilles tendon and plantar fascia, and new bone formation. This study was undertaken to unravel the mechanisms leading towards enthesitis and new bone formation in preclinical models of SpA.

View Article and Find Full Text PDF

Rheumatoid arthritis is a destructive arthropathy characterized by chronic synovial inflammation that imposes a substantial socioeconomic burden. Under the influence of the proinflammatory milieu, synovial fibroblasts (SFs), the main effector cells in disease pathogenesis, become activated and hyperplastic, releasing proinflammatory factors and tissue-remodeling enzymes. This study shows that activated arthritic SFs from human patients and animal models express significant quantities of autotaxin (ATX; ENPP2), a lysophospholipase D that catalyzes the conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

TNF plays a crucial role in the pathogenesis of Crohn disease. Dysregulated TNF production in mice that bear the genetic deletion of the TNF AU-rich regulatory elements (ARE) (Tnf(ΔARE/+) mice) results in TNF receptor I (TNFRI)-dependent spontaneous Crohn-like pathology. Current concepts consider intestinal epithelial cell (IEC) responses to TNF to be critical for intestinal pathology, but the potential contribution of IEC-derived TNF in disease pathogenesis has not been addressed.

View Article and Find Full Text PDF

The TNF/TNF receptor (TNFR) system has a prominent role in the pathogenesis of chronic inflammatory and autoimmune disorders. Extensive research in animal models with deregulated TNF expression has documented that TNF may initiate or sustain inflammatory pathology, while at the same time may exert immunomodulatory or disease-suppressive activities. The TNF/TNFR system encompassing both the soluble and the transmembrane form of TNF with differential biological activities, as well as the differential usage of its receptors, mediating distinct functions, appears to confer complexity but also specificity in the action of TNF.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is key to the pathogenesis of various arthritic diseases and inflammatory bowel disease (IBD). Anti-TNF therapies have proved successful in the clinical treatment of these diseases, but a mechanistic understanding of TNF function is still lacking. We have investigated early cellular mechanisms of TNF function in these diseases using an established TNF transgenic model, which develops a spondyloarthritis-like disease characterized by peripheral joint arthritis, sacroiliitis, enthesitis, and Crohn's-like IBD.

View Article and Find Full Text PDF

p38 mitogen-activated protein kinases (MAPKs) are activated primarily in response to inflammatory cytokines and cellular stress, and inhibitors which target the p38alpha and p38beta MAPKs have shown potential for the treatment of inflammatory disease. Here we report the generation and initial characterization of a knockout of the p38beta (MAPK11) gene. p38beta-/- mice were viable and exhibited no apparent health problems.

View Article and Find Full Text PDF

Rheumatoid arthritis is a chronic inflammatory disease with a high prevalence and substantial socioeconomic burden. Despite intense research efforts, its aetiology and pathogenesis remain poorly understood. To identify novel genes and/or cellular pathways involved in the pathogenesis of the disease, we utilized a well-recognized tumour necrosis factor-driven animal model of this disease and performed high-throughput expression profiling with subtractive cDNA libraries and oligonucleotide microarray hybridizations, coupled with independent statistical analysis.

View Article and Find Full Text PDF

Increasing attention has been directed towards identifying non-T-cell mechanisms as potential therapeutic targets in rheumatoid arthritis. Synovial fibroblast (SF) activation, a hallmark of rheumatoid arthritis, results in inappropriate production of chemokines and matrix components, which in turn lead to bone and cartilage destruction. We have demonstrated that SFs have an autonomous pathogenic role in the development of the disease, by showing that they have the capacity to migrate throughout the body and cause pathology specifically to the joints.

View Article and Find Full Text PDF

Recent clinical evidence demonstrated the importance of tumor necrosis factor (TNF) in the development of Crohn's disease. A mouse model for this pathology has previously been established by engineering defects in the translational control of TNF mRNA (Tnf(Delta)(ARE) mouse). Here, we show that development of intestinal pathology in this model depends on Th1-like cytokines such as interleukin 12 and interferon gamma and requires the function of CD8(+) T lymphocytes.

View Article and Find Full Text PDF