Publications by authors named "Maria Antonietta Tosches"

Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors.

View Article and Find Full Text PDF

Amphibians, by virtue of their phylogenetic position, provide invaluable insights on nervous system evolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons.

View Article and Find Full Text PDF

The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl.

View Article and Find Full Text PDF

The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander .

View Article and Find Full Text PDF

The existence of evolutionarily conserved regions in the vertebrate brain is well established. The rules and constraints underlying the evolution of neuron types, however, remain poorly understood. To compare neuron types across brain regions and species, we generated a cell type atlas of the brain of a bearded dragon and compared it with mouse datasets.

View Article and Find Full Text PDF

With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species.

View Article and Find Full Text PDF

Several techniques are currently being developed for spatially resolved omics profiling, but each new method requires the setup of specific detection strategies or specialized instrumentation. Here we describe an imaging-free framework to localize high-throughput readouts within a tissue by cutting the sample into thin strips in a way that allows subsequent image reconstruction. We implemented this framework to transform a low-input RNA sequencing protocol into an imaging-free spatial transcriptomics technique (called STRP-seq) and validated it by profiling the spatial transcriptome of the mouse brain.

View Article and Find Full Text PDF

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent.

View Article and Find Full Text PDF

The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness. Here we report that a homologue of the claustrum, identified by single-cell transcriptomics and viral tracing of connectivity, also exists in a reptile-the Australian bearded dragon Pogona vitticeps. In Pogona, the claustrum underlies the generation of sharp waves during slow-wave sleep.

View Article and Find Full Text PDF

Background: During early development, patterns of cell division-embryonic cleavage-accompany the gradual restriction of blastomeres to specific cell fates. In Spiralia, which include annelids, mollusks, and flatworms, "spiral cleavage" produces a highly stereotypic, spiral-like arrangement of blastomeres and swimming trochophore-type larvae with rotational (spiral) symmetry. However, starting at larval stages, spiralian larvae acquire elements of bilateral symmetry, before they metamorphose into fully bilateral juveniles.

View Article and Find Full Text PDF

To understand neocortex evolution, we must define a theory for the elaboration of cell types, circuits, and architectonics from an ancestral structure that is consistent with developmental, molecular, and genetic data. To this end, cross-species comparison of cortical cell types emerges as a very informative approach. We review recent results that illustrate the contribution of molecular and transcriptomic data to the construction of plausible models of cortical cell-type evolution.

View Article and Find Full Text PDF

Computations in the mammalian cortex are carried out by glutamatergic and γ-aminobutyric acid-releasing (GABAergic) neurons forming specialized circuits and areas. Here we asked how these neurons and areas evolved in amniotes. We built a gene expression atlas of the pallium of two reptilian species using large-scale single-cell messenger RNA sequencing.

View Article and Find Full Text PDF

Comparative developmental studies provide growing understanding of vertebrate forebrain evolution. This short review directs the spotlight to some newly emerging aspects, including the evolutionary origin of the proliferative region known as the subventricular zone (SVZ) and of intermediate progenitor cells (IPCs) that populate the SVZ, neural circuits that originated within homologous regions across all amniotes, and the role of thermogenesis in the acquisition of an increased brain size. These data were presented at the 8th European Conference on Comparative Neurobiology.

View Article and Find Full Text PDF

Regardless of how a nervous system is genetically built, natural selection is acting on the functional outcome of its activity. To understand how nervous systems evolve, it is essential to analyze how their functional units - the neural circuits - change and adapt over time. A neural circuit can evolve in many different ways, and the underlying developmental and genetic mechanisms involve different sets of genes.

View Article and Find Full Text PDF

The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal.

View Article and Find Full Text PDF

The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion.

View Article and Find Full Text PDF
Article Synopsis
  • The text explores the concept of the reptile brain, highlighting its fundamental role in understanding the evolution of neural circuits in vertebrates.
  • It discusses the structural characteristics of the reptile brain and how these features have influenced the functionality of more complex brains in higher vertebrates.
  • The study provides insights into the evolutionary history of brain development, emphasizing the importance of the reptile brain in the context of neurological studies.
View Article and Find Full Text PDF

Melatonin, the "hormone of darkness," is a key regulator of vertebrate circadian physiology and behavior. Despite its ubiquitous presence in Metazoa, the function of melatonin signaling outside vertebrates is poorly understood. Here, we investigate the effect of melatonin signaling on circadian swimming behavior in a zooplankton model, the marine annelid Platynereis dumerilii.

View Article and Find Full Text PDF

Background: Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles.

View Article and Find Full Text PDF