Publications by authors named "Maria Antonietta Piliero"

Purpose: Using optimal settings for x-ray scans is crucial for obtaining three-dimensional images of high quality while keeping the patient dose low. Our work compares dose and image quality (IQ) of three intraoperative imaging systems [O-arm cone-beam computed tomography (CBCT), ClarifEye C-arm CBCT, and Airo computed tomography] used for spinal surgery.

Approach: Patients of 70, 90, and 110 kg were simulated with an anthropomorphic phantom by adding tissue-equivalent material.

View Article and Find Full Text PDF

Purpose: To compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery.

Methods: The manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared. Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson RadiationTherapy anthropomorphic phantom.

View Article and Find Full Text PDF

Purpose: The purpose of the reported study was to investigate the value of cone-beam computed tomography (CBCT)-based radiomics for risk stratification and prediction of biochemical relapse in prostate cancer.

Methods: The study population consisted of 31 prostate cancer patients. Radiomics features were extracted from weekly CBCT scans performed for verifying treatment position.

View Article and Find Full Text PDF

Objective: To evaluate the performance of low dose cone beam CT (CBCT) acquisition protocols for image-guided radiotherapy of prostate cancer.

Methods: CBCT images of patients undergoing prostate cancer radiotherapy were acquired with the settings currently used in our department and two low dose settings at 50% and 63% lower exposure. Four experienced radiation oncologists and two radiation therapy technologists graded the images on five image quality characteristics.

View Article and Find Full Text PDF

Background: Monolithic scintillators read out by arrays of photodetectors represent a promising solution to obtain high spatial resolution and the depth of interaction (DOI) of the annihilation photon. We have recently investigated a detector geometry composed of a monolithic scintillator readout on two sides by silicon photomultiplier (SiPM) arrays, and we have proposed two parameters for the DOI determination: the difference in the number of triggered SiPMs on the two sides of the detector and the difference in the maximum collected signal on a single SiPM on each side. This work is focused on the DOI calibration and on the determination of the capability of our detector.

View Article and Find Full Text PDF

The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging.

View Article and Find Full Text PDF