Publications by authors named "Maria Antonietta Loi"

In recent years, metal halide perovskite-based light-emitting diodes (LEDs) have garnered significant attention as they display high quantum efficiency, good spectral tunability, and are expected to have low processing costs. When the peak emission wavelength is beyond 900 nm the interest is even higher because of the critical importance of this wavelength for biomedical imaging, night vision, and sensing. However, many challenges persist in fabricating these high-performance NIR LEDs, particularly for wavelengths above 950 nm, which appear to be limited by low radiance and poor stability.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have tackled the challenge of crystal growth alignment in low-dimensional perovskites (LDPs) used for solar cells, specifically those with wide band gaps that hinder charge flow.
  • By adding chlorine to the precursor solution, they induced vertical crystal growth which enhances efficiency.
  • This method led to a significant power conversion efficiency of 9.4% and an open circuit voltage of 1.4V, paving the way for innovative solar applications in buildings and indoor energy solutions.
View Article and Find Full Text PDF
Article Synopsis
  • Metalloporphyrins with open-shell transition metals like Ni(II) have a fast excited-state relaxation mechanism, which is explored in a nanographene-Ni(II) porphyrin conjugate.
  • Using variable temperature transient absorption and global fit analysis, the study reveals that after photoexcitation, vibrational cooling occurs in 1.6 ps, followed by a brief 20 ps window where some excited states decay radiatively before intersystem crossing.
  • At low temperatures, two relaxation pathways from the lowest triplet state to the ground state are identified: a slow process over 1.6 ns and a faster route influenced by a conical intersection, important for applications in energy harvesting and optoelectronics.
View Article and Find Full Text PDF

Lead chalcogenide colloidal quantum dots are one of the most promising materials to revolutionize the field of short-wavelength infrared optoelectronics due to their bandgap tunability and strong absorption. By self-assembling these quantum dots into ordered superlattices, mobilities approaching those of the bulk counterparts can be achieved while still retaining their original optical properties. The recent literature focused mostly on PbSe-based superlattices, but PbS quantum dots have several advantages, including higher stability.

View Article and Find Full Text PDF

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs) and ultimately enhances device performance. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge.

View Article and Find Full Text PDF
Article Synopsis
  • The surface chemistry of colloidal semiconductor nanocrystals, particularly InP QDs, significantly affects their properties and applications, especially in optoelectronics.
  • Replacing insulating organic ligands with shorter inorganic alternatives improves charge mobility and stability, making them suitable for devices like LEDs and photodetectors.
  • The study investigates the ligand exchange using group III metal salts and reveals that these salts create stable metal-solvent complexes, enhancing the colloidal stability of InP QDs in polar solvents for extended periods.
View Article and Find Full Text PDF

The phase-transfer ligand exchange of PbS quantum dots (QDs) has substantially simplified device fabrication giving hope for future industrial exploitation. However, this technique when applied to QDs of large size (>4 nm) gives rise to inks with poor colloidal stability, thus hindering the development of QDs photodetectors in short-wavelength infrared range. Here, it is demonstrated that methylammonium lead iodide ligands can provide sufficient passivation of PbS QDs of size up to 6.

View Article and Find Full Text PDF
Article Synopsis
  • The optical response of 2D layered perovskites features closely spaced spectral signatures, interpreted as phonon replicas, with an energy separation ranging from 12 to 40 meV, depending on the material.
  • These materials also show a strong scattering response in resonant Raman spectroscopy above roughly 200 cm (or 25 meV), which is linked to the presence of polarons, exhibiting a distinctive spectral pattern deviating from the Rayleigh line.
  • A significant Huang-Rhys factor (S > 6) suggests strong coupling between charge carriers and the lattice, with polaron binding energies between 20-35 meV, influencing the optical properties critical for future opto-electronic applications.
View Article and Find Full Text PDF

The integration of organic electronic circuits into real-life applications compels the fulfillment of a range of requirements, among which the ideal operation at a low voltage with reduced power consumption is paramount. Moreover, these performance factors should be achieved via solution-based fabrication schemes in order to comply with the promise of cost- and energy-efficient manufacturing offered by an organic, printed electronic technology. Here, we propose a solution-based route for the fabrication of low-voltage organic transistors, encompassing ideal device operation at voltages below 5 V and exhibiting n-type unipolarization.

View Article and Find Full Text PDF

An introduction to the Nanoscale themed collection on halide perovskite nanomaterials for optoelectronic applications, featuring a variety of articles that highlight the latest developments to address ongoing challenges in the field.

View Article and Find Full Text PDF

Metal halide perovskites show the capability of performing structural transformation, allowing the formation of functional heterostructures. Unfortunately, the elusive mechanism governing these transformations limits their technological application. Herein, the mechanism of 2D-3D structural transformation is unraveled as catalyzed by solvents.

View Article and Find Full Text PDF

Two terminal passive devices are regarded as one of the promising candidates to solve the processor-memory bottleneck in the Von Neumann computing architectures. Many different materials are used to fabricate memory devices, which have the potential to act as synapses in future neuromorphic electronics. Metal halide perovskites are attractive for memory devices as they display high density of defects with a low migration barrier.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created blue LEDs that emit light at a specific peak wavelength of 481 nm and achieved a color purity of 88%, along with a luminance of 8260 cd/m² and an external quantum yield of 5.2%.
  • The LEDs are made from a material called quasi-2D PEA(CsMA)PbBr, with an additive (isopropylammonium or iPAm) that helps prevent unwanted bulk-like phase formations.
  • The study also shows that by managing energy transfer within the material, the researchers improved the efficiency of these blue-emitting LEDs, achieving a photoluminescence quantum yield over 60% and suggesting a potential for better optoelectronic devices using tailored
View Article and Find Full Text PDF
Article Synopsis
  • 3D superlattices of colloidal quantum dots have potential for next-gen optoelectronic devices due to their tunable optical properties and coherent electrical transport.
  • Previous research mostly focused on 2D arrays, which struggled with long-range order and transport issues.
  • Controlled nanoscale ordering of 3D quantum dots has achieved record electron mobilities and demonstrates the possibility of highly tunable optical properties, paving the way for advanced optoelectronic materials.
View Article and Find Full Text PDF

Conjugated polymers with narrow band gaps are particularly useful for sorting and discriminating semiconducting single-walled carbon nanotubes (s-SWCNT) due to the low charge carrier injection barrier for transport. In this paper, we report two newly synthesized narrow-band-gap conjugated polymers ( and ) based on naphthalene diimide (NDI) and thienylennevinylene (TVT) building blocks, decorated with different polar side chains that can be used for dispersing and discriminating s-SWCNT. Compared with the mid-band-gap conjugated polymer , which is composed of naphthalene diimide (NDI) and head-to-head bithiophene building blocks, the addition of a vinylene linker eliminates the steric congestion present in head-to-head bithiophene, which promotes backbone planarity, extending the π-conjugation length and narrowing the band gap.

View Article and Find Full Text PDF

The control of morphology and microstructure during and after the active layer processing of bulk-heterojunction solar cells is critical to obtain elevated fill factors and overall good device performance. With the recent development of non-fullerene acceptors, wide attention has been paid to improve miscibility, solubility and nanoscale separation by laborious molecular design processes and by the use of additives. Nonetheless, several post-processing strategies can equally contribute to obtain an optimum phase separation and even to an enhanced crystallinity, but their effect on performance and device lifetime of polymer/non-fullerene acceptor solar cells is still unclear.

View Article and Find Full Text PDF

Optically inactive dark exciton states play an important role in light emission processes in semiconductors because they provide an efficient nonradiative recombination channel. Understanding the exciton fine structure in materials with potential applications in light-emitting devices is therefore critical. Here, we investigate the exciton fine structure in the family of two-dimensional (2D) perovskites (PEA)SnI, (PEA)PbI, and (PEA)PbBr.

View Article and Find Full Text PDF

Metal halide perovskites have unique optical and electrical properties, which make them an excellent class of materials for a broad spectrum of optoelectronic applications. However, it is with photovoltaic devices that this class of materials has reached the apotheosis of popularity. High power conversion efficiencies are achieved with lead-based compounds, which are toxic to the environment.

View Article and Find Full Text PDF

Molecular doping makes possible tunable electronic properties of organic semiconductors, yet a lack of control of the doping process narrows its scope for advancing organic electronics. Here, we demonstrate that the molecular doping process can be improved by introducing a neutral radical molecule, namely nitroxyl radical (2,2,6,6-teramethylpiperidin-i-yl) oxyl (TEMPO). Fullerene derivatives are used as the host and 1,3-dimethyl-2-phenyl-2,3-dihydro-1-benzo[d]imidazoles (DMBI-H) as the n-type dopant.

View Article and Find Full Text PDF

Tin-alloyed halide perovskites are progressively becoming more popular as slowly their optoelectronic properties start to rival those of the potentially risky pure lead analogues. However, to push this attractive semiconductor toward realistic applications, several major issues need to be solved. This Perspective will start with a description of the fundamental properties of tin-alloyed halide perovskites, continue discussing their weak points with special attention on the structural and electronic instabilities, and conclude examining the effects of the above-mentioned properties on devices.

View Article and Find Full Text PDF
Article Synopsis
  • Blends of semiconducting and ferroelectric polymers are being researched for use in resistive memories and organic photovoltaics due to potential improvements in power conversion efficiency through localized electric fields.
  • The study focuses on a block copolymer consisting of a ferroelectric component (P(VDF-TrFE)) and a semiconducting component (P3HT) to create smooth thin films, overcoming processing challenges encountered when using these materials individually.
  • Despite the integration of these materials, the photovoltaic performance of the resulting solar cells was found to decrease due to unfavorable nanomorphology, with lithium fluoride's role in modifying device performance also being investigated.
View Article and Find Full Text PDF

Thanks to their broadly tunable bandgap and strong absorption, colloidal lead chalcogenide quantum dots (QDs) are highly appealing as solution-processable active layers for third-generation solar cells. However, the modest reproducibility of this kind of solar cell is a pertinent issue, which inhibits the exploitation of this material class in optoelectronics. This issue is not necessarily imputable to the active layer but may originate from different constituents of the device structure.

View Article and Find Full Text PDF

Metal halide perovskite shelled quantum dot solids have recently emerged as an interesting class of solution-processable materials that possess the desirable electronic properties of both quantum dots and perovskites. Recent reports have shown that lead sulfide quantum dots (PbS QDs) with perovskite ligand-shells can be successfully utilized in (opto)electronic devices such as solar cells, photoconductors, and field-effect transistors (FETs), a development attributed to the compatibility of lattice parameters between PbS and certain metal halide perovskites that results in the growth of the perovskite shell on the PbS QDs. Of several possible perovskite combinations used with PbS QDs, bismuth-based variants have been shown to have the lowest lattice mismatch and to display excellent performance in photoconductors.

View Article and Find Full Text PDF

Lead sulphide (PbS) nanocrystals (NCs) are promising materials for low-cost, high-performance optoelectronic devices. So far, PbS NCs have to be first synthesized with long-alkyl chain organic surface ligands and then be ligand-exchanged with shorter ligands (two-steps) to enable charge transport. However, the initial synthesis of insulated PbS NCs show no necessity and the ligand-exchange process is tedious and extravagant.

View Article and Find Full Text PDF