Publications by authors named "Maria Antonietta Casulli"

Curcumin (CUR), a polyphenolic substance from turmeric, displays diverse medicinal properties. However, its instability poses challenges in detection. Cyclodextrin-based nanogels (CyDngs) offer a transformative solution, enhancing CUR's stability in aqueous solutions.

View Article and Find Full Text PDF

Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible.

View Article and Find Full Text PDF

Stable water-in-oil emulsion membranes can be prepared using [dilauryl(dimethyl)ammonium] bromide (DDAB), a cationic surfactant. We prepared ultrasmall cyclodextrin (γ-CyD) nanogels (γ-CyDngs) by forming ionic pairs between the secondary hydroxyl groups of γ-CyDs and DDAB. Fluorescence and NMR characterisation of the obtained γ-CyDngs revealed superior inclusion affinities compared with native γ-CyDs, beneficial for the solubilisation of hydrophobic compounds in water.

View Article and Find Full Text PDF

Specifically designed electrochemical sensors are standing out as alternatives to enzyme-based biosensors for the sensing of metabolites. In our previous works, we developed a new electrochemical assay based on cyclodextrin supramolecular complexes. A ferrocene moiety (Fc) was chemically modified by phenylboronic acid (4-Fc-PB) and combined with two different kinds of cyclodextrins (CDs): β-CD and β-CD modified by a dipicolylamine group (dpa--HB-β-CDs) for the sensing of fructose and adenosine-triphosphate (ATP), respectively.

View Article and Find Full Text PDF

Electrochemical detection based on cyclodextrin supramolecular complexes is founded on the competitive binding between electroactive probes and target molecules. This limits their versatility to be used for sensing a broad range of metabolites. In this work, we demonstrate the significant role of zinc ions as well as of β-cyclodextrins modified with dipicolylamine and of a phenylboronic acid-modified ferrocene probe to address a selective electrochemical detection of adenosin triphosphate (ATP).

View Article and Find Full Text PDF

The aim of the present paper is to highlight a novel electrochemical assay for an extremely-selective detection of fructose thanks to the use of a supramolecular complex between β-cyclodextrins (β-CDs) and a chemically modified ferrocene with boronic acid named 4-Fc-PB/natural-β-CDs. Another kind of β-CDs, the 4-Fc-PB/3-phenylboronic-β-CDs, is proposed for the detection of glucose. The novel electrochemical probe is fully characterized by H nuclear magnetic resonance, mass spectroscopy, and elemental analysis, while the superior electrochemical performance is assessed in terms of sensitivity and detection limit.

View Article and Find Full Text PDF

We synthesized novel PET (photoinduced electron transfer)-type fluorescence glucose probe [(4-(anthracen-2-yl-carbamoyl)-3-fluorophenyl)boronic acid], which has a phenylboronic acid (PBA) moiety as the recognition site and anthracene as the fluorescent part. Although the PBA derivatives dissociate and bind with sugar in the basic condition, our new fluorescent probe can recognize sugars in the physiological pH by introducing an electron-withdrawing fluorine group into the PBA moiety. As a result, the p value of this fluorescent probe was lowered and the probe was able to recognize sugars at the physiological pH of 7.

View Article and Find Full Text PDF

Conventional pharmaceutical processes involving cell culture growth are generally taken under control with expensive and long laboratory tests performed by direct sampling to evaluate quality. This traditional and well-established approach is just partially adequate in providing information about cell state. Electrochemical enzyme-based biosensors offer several advantages towards this application.

View Article and Find Full Text PDF