Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit.
View Article and Find Full Text PDFPost-transcriptional adenosine-to-inosine RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) promotes cancer progression and therapeutic resistance. However, ADAR1 editase-dependent mechanisms governing leukemia stem cell (LSC) generation have not been elucidated. In blast crisis chronic myeloid leukemia (BC CML), we show that increased JAK2 signaling and BCR-ABL1 amplification activate ADAR1.
View Article and Find Full Text PDFADAR (adenosine deAminase acting on RNA) editases catalyze the deamination of adenosine to inosine (A-to-I), a post-transcriptional modification that alters coding and non-coding RNA stability and function. ADAR editases such as ADAR1 have recently been shown to play a key role in normal stem cell maintenance. While ADAR mutations are associated with hereditary autoimmune diseases such as Aicardi-Goutières syndrome, ADAR copy-number alterations and editase activation have been associated with progression of a broad array of malignancies.
View Article and Find Full Text PDFThe existence and identification of adult renal stem cells is a controversial issue. In this study, renal stem cells were identified from cultures of clonal human nephrospheres. The cultured nephrospheres exhibited the activation of stem cell pathways and contained cells at different levels of maturation.
View Article and Find Full Text PDF