Accumulation of amyloid β-peptide (Aβ) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aβ pathology, allowing elucidation of downstream effects of Aβ accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in App and App knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD.
View Article and Find Full Text PDFBackground: Astrocytes play a central role in maintaining brain energy metabolism, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous studies demonstrate that inflammatory astrocytes accumulate large amounts of aggregated amyloid-beta (Aβ). However, in which way these Aβ deposits influence their energy production remain unclear.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) research has relied on mouse models overexpressing human mutant A βPP; however, newer generation knock-in models allow for physiological expression of amyloid-β protein precursor (AβPP) containing familial AD mutations where murine AβPP is edited with a humanized amyloid-β (Aβ) sequence. The AppNL-F mouse model has shown substantial similarities to AD brains developing late onset cognitive impairment.
Objective: In this study, we aimed to characterize mature primary cortical neurons derived from homozygous AppNL-F embryos, especially to identify early mitochondrial alterations in this model.
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid β-peptide (Aβ) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction.
View Article and Find Full Text PDFMitochondria-endoplasmic reticulum (ER) contact sites (MERCS) have been emerging as a multifaceted subcellular region of the cell which affects several physiological and pathological mechanisms. A thus far underexplored aspect of MERCS is their contribution to exocytosis. Here, we set out to understand the role of these contacts in exocytosis and find potential mechanisms linking these structures to vesicle release in human neuroblastoma SH-SY5Y cells.
View Article and Find Full Text PDFDrp1 is a central player in mitochondrial fission and is recruited to mitochondria by Mff and MIEFs (MIEF1 and MIEF2), but little is known about how its assembly state affects Drp1 mitochondrial recruitment and fission. Here, we used chemical crosslinking to explore the self-assembly state of Drp1 and how it regulates the association of Drp1 with MIEFs and Mff. We show that in intact mammalian cells Drp1 exists as a mixture of multiple self-assembly forms ranging from the minimal, probably tetrameric, self-assembly subunit to several higher order oligomers.
View Article and Find Full Text PDFBackground: Mitochondrial dynamics is the result of a dynamic balance between fusion and fission events, which are driven via a set of mitochondria-shaping proteins. These proteins are generally considered to be binary components of either the fission or fusion machinery, but potential crosstalk between the fission and fusion machineries remains less explored. In the present work, we analyzed the roles of mitochondrial elongation factors 1 and 2 (MIEF1/2), core components of the fission machinery in mammals.
View Article and Find Full Text PDFPridopidine is a selective Sigma-1 receptor (S1R) agonist in clinical development for Huntington disease (HD) and amyotrophic lateral sclerosis. S1R is a chaperone protein localized in mitochondria-associated endoplasmic reticulum (ER) membranes, a signaling platform that regulates Ca signaling, reactive oxygen species (ROS) and mitochondrial fission. Here, we investigate the protective effects of pridopidine on various mitochondrial functions in human and mouse HD models.
View Article and Find Full Text PDFBackground: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential.
View Article and Find Full Text PDFRecent findings have shown that the connectivity and crosstalk between mitochondria and the endoplasmic reticulum (ER) at mitochondria-ER contact sites (MERCS) are altered in Alzheimer's disease (AD) and in AD-related models. MERCS have been related to the initial steps of autophagosome formation as well as regulation of mitochondrial function. Here, the interplay between MERCS, mitochondria ultrastructure and function and autophagy were evaluated in different AD animal models with increased levels of Aβ as well as in primary neurons derived from these animals.
View Article and Find Full Text PDFMitochondrial dysfunction is implicated in most neurodegenerative diseases, including Alzheimer's disease (AD). We here combined experimental and computational approaches to investigate mitochondrial health and bioenergetic function in neurons from a double transgenic animal model of AD (PS2APP/B6.152H).
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia and there is no successful treatment available. Evidence suggests that fibril formation of the amyloid β-peptide (Aβ) is a major underlying cause of AD, and treatment strategies that reduce the toxic effects of Aβ amyloid are sought for. The BRICHOS domain is found in several proteins, including Bri2 (also called integral membrane protein 2B (ITM2B)), mutants of which are associated with amyloid and neurodegeneration, and Bri3 (ITM2C).
View Article and Find Full Text PDFIdiopathic normal pressure hydrocephalus (iNPH) is a neuropathology with unknown cause characterised by gait impairment, cognitive decline and ventriculomegaly. These patients often present comorbidity with Alzheimer's disease (AD), including AD pathological hallmarks such as amyloid plaques mainly consisting of amyloid β-peptide and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Even though some of the molecular mechanisms behind AD are well described, little is known about iNPH.
View Article and Find Full Text PDFSubcellular distribution of mitochondria in neurons is crucial for meeting the energetic demands, as well as the necessity to buffer Ca within the axon, dendrites and synapses. Mitochondrial impairment is an important feature of Parkinson disease (PD), in which both familial parkinsonism genes DJ-1 and PINK1 have a great impact on mitochondrial function. We used differentiated human dopaminergic neuroblastoma cell lines with stable PINK1 or DJ-1 knockdown to study live motility of mitochondria in neurites.
View Article and Find Full Text PDFThe mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria.
View Article and Find Full Text PDFNeurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes.
View Article and Find Full Text PDFProteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long.
View Article and Find Full Text PDFOver the past several decades, an overwhelming body of research has greatly expanded our understanding of the mechanisms underlying excitotoxicity in brain ischemia as well as in many chronic neurodegenerative diseases. The identification of an array of molecular targets has opened avenues for neuroprotective strategies and, consequently, has sparked considerable interest for their attractive therapeutic means as pharmacological options. The purpose of this work is to provide a general overview of neuronal excitotoxicity and the inevitable downstream consequences of Ca overload.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
During the last decades, increasing evidence indicated that subcellular organelles do not exist as autarkic units but instead communicate constantly and extensively with each other in various ways. Some communication, for example, the exchange of small molecules, requires the marked convergence of two distinct organelles for a certain period of time. The cross talk between endoplasmic reticulum (ER) and mitochondria, two subcellular organelles of utmost importance for cellular bioenergetics and protein homeostasis, has been increasingly investigated under the last years.
View Article and Find Full Text PDFMitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β-peptide (Aβ)-related neuronal models.
View Article and Find Full Text PDFExtracellular aggregates of amyloid-β peptides (Aβ) are a hallmark in Alzheimer's disease (AD) brains. Recent findings suggest that Aβ is generated intracellularly and potential production sites include endosomes and trans-Golgi network. We determined the production of Aβ in subcellular fractions isolated from mouse brain.
View Article and Find Full Text PDFIt is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation.
View Article and Find Full Text PDFThe apolipoprotein E (APOE) gene remains the most strongly established risk factor for late onset Alzheimer's disease (LOAD). Recently the gene, TOMM40, which is in linkage disequilibrium with APOE, was identified to be associated with LOAD in genome-wide association studies. One of the identified polymorphisms in TOMM40 is rs10524523, which is located in intron 6 and composed of thymidine repeats varying between 14 to 36 base-pairs in length.
View Article and Find Full Text PDFSignificance: Detailed knowledge about cell death and cell survival mechanisms and how these pathways are impaired in neurodegenerative disorders and cancer forms the basis for future drug development for these diseases that affect millions of people around the world.
Recent Advances: In neurodegenerative disorders such as Alzheimer's disease (AD), cell death pathways are inappropriately activated, resulting in neuronal cell death. In contrast, cancer cells develop resistance to apoptosis by regulating anti-apoptotic proteins signaling via mitochondria.