Publications by authors named "Maria Angels Carvajal"

A multiscale computational study was performed with the aim of tracing the source of stereoselectivity and disclosing the role of water in the stereoselective step of propionaldehyde aldol self-condensation catalyzed by proline amide in water, a reaction that serves as a model for aqueous organocatalytic aldol condensations. Solvent mixing and hydration behavior were assessed by classical molecular dynamics simulations, which show that the reaction between propanal and the corresponding enamine takes place in a fully hydrated environment. First-principles molecular dynamics simulations were used to study the free-energy profile of four possible reaction paths, each of which yields a different stereoisomer, and high-level static first-principles calculations were employed to characterize the transition states for microsolvated species.

View Article and Find Full Text PDF

High level ab initio calculations on the photoinduced high-spin molecule [Mo(CN)(2)(CN-Cu(tris(2-aminoethyl)amine)(6)](8+) are reported. The calculations indicate that the mechanism of the photoinduced transformation from a paramagnetic to a ferromagnetic state involves a local Mo d-d transition followed by the deformation of the coordination sphere from dodecahedron to square antiprism. Subsequently, Mo loses a ligand and becomes seven coordinated in a pentagonal bipyramid coordination.

View Article and Find Full Text PDF

Ab initio calculations show that a possible mechanism for the photomagnetism in copper octacyanomolybdate compounds consists of the initial excitation of the diamagnetic Cu(II)-Mo(IV-CS) pair to a Cu(II)-Mo(IV-T) state, whose geometry relaxation stabilizes the magnetic doublet and quartet states.

View Article and Find Full Text PDF

The first half-reaction of nitric oxide synthase (NOS) is investigated by means of quantum mechanical/molecular mechanical (QM/MM) calculations. An energetically feasible arginine hydroxylation path was found only when the iron-oxy complex accepted one proton from an external source. The so formed species has not been considered in heme chemistry; it is described as Por(+*)Fe(III)-OOH and is characterized by the same molecular constituency as the more known ferric-hydroperoxide species, compound 0, but has a cation-radical porphyrin moiety.

View Article and Find Full Text PDF

This study directly compares the active species of heme enzymes, so-called Compound I (Cpd I), across the heme-thiolate enzyme family. Thus, sixty-four different Cpd I structures are calculated by hybrid quantum mechanical/molecular mechanical (QM/MM) methods using four different cysteine-ligated heme enzymes (P450(cam), the mutant P450(cam)-L358P, CPO and NOS) with varying QM region sizes in two multiplicities each. The overall result is that these Cpd I species are similar to each other with regard to many characteristic features.

View Article and Find Full Text PDF

The effect of external electric fields (EFs) on the reactivity of nonheme iron(IV)-oxo species toward alkanes is investigated computationally using density functional theory. It is shown that an external EF changes the energy landscape of the process and thereby impacts the mechanisms, rates, and selectivities of the reactions, in a manner dependent on the nature of the iron(IV)-oxo/alkane pair. When the iron-oxo species is a good electron acceptor, like N4PyFeO2+, and the alkane is a good electron donor, like toluene, the application of the EF changes the mechanism from hydrogen abstraction to electron transfer.

View Article and Find Full Text PDF

A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations.

View Article and Find Full Text PDF