Publications by authors named "Maria Angelica Hidalgo"

During acute ruminal acidosis, the manifestation of aseptic polysynovitis and lameness in cattle has been observed. Evidence suggests that joint inflammation can be attributed to the metabolic alterations induced by D-lactate in fibroblast-like synoviocytes (FLSs). We aimed to investigate whether andrographolide could mitigate the inflammation and metabolic alterations induced by D-lactate in bovine fibroblast-like synoviocytes (bFLSs).

View Article and Find Full Text PDF

During an inflammatory process, shift in the cellular metabolism associated with an increase in extracellular acidification are well-known features. This pH drop in the inflamed tissue is largely attributed to the presence of lactate by an increase in glycolysis. In recent years, evidence has accumulated describing the role of lactate in inflammatory processes; however, there are differences as to whether lactate can currently be considered a pro- or anti-inflammatory mediator.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are the main metabolites produced by the bacterial fermentation of dietary fiber, and they play a critical role in the maintenance of intestinal health. SCFAs are also essential for modulating different processes, and they have anti-inflammatory properties and immunomodulatory effects. As the inflammatory process predisposes the development of cancer and promotes all stages of tumorigenesis, an antitumor effect has also been associated with SCFAs.

View Article and Find Full Text PDF

Acute ruminal acidosis (ARA) occurs after an excessive intake of rapidly fermentable carbohydrates and is characterized by the overproduction of D-lactate in the rumen that reaches the bloodstream. Lameness presentation, one of the primary consequences of ARA in cattle, is associated with the occurrence of laminitis and aseptic polysynovitis. Fibroblast-like synoviocytes (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the chances of the release of pro-inflammatory cytokines.

View Article and Find Full Text PDF

Acute ruminal acidosis (ARA) is caused by the excessive intake of highly fermentable carbohydrates, followed by the massive production of D-lactate and the appearance of neutrophilic aseptic polysynovitis. Bovines with ARA develop different lesions, such as ruminitis, polioencephalomalacia (calves), liver abscess and lameness. Lameness in cattle with ARA is closely associated with the presence of laminitis and polysynovitis.

View Article and Find Full Text PDF

Neutrophil extracellular trap (NET) formation eliminates/prevents the spread of infectious agents. Platelet activating factor (PAF) is involved in infectious diseases of cattle because it recruits and activates neutrophils. However, its ability to induce NET release and the role of metabolism in this process is not known.

View Article and Find Full Text PDF

Dairy cows undergo metabolic disturbances in the peripartum period, during which infectious inflammatory diseases and detrimental polymorphonuclear leukocytes (PMN) functions, such as radical oxygen species (ROS) production, are observed. Platelet-activating factor (PAF) is a key pro-inflammatory mediator that increases PMN ROS production. To date, the role of glycolysis and mitochondria in PAF-induced ROS production in bovine PMN has not been known.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils.

View Article and Find Full Text PDF