Publications by authors named "Maria Angeles de Pedro"

Background: Mesenchymal stromal cells (MSCs) have been shown to exert their therapeutic effects through the secretion of broad spectrum of paracrine factors, including extracellular vesicles (EVs). Accordingly, EVs are being pursued as a promising alternative to cell-based therapies. Menstrual blood-derived stromal cells (MenSCs) are a type of MSC that, due to their immunomodulatory and regenerative properties, have emerged as an innovative source.

View Article and Find Full Text PDF

Background: Despite constant advances in regenerative medicine, the closure of chronic wounds is still challenging. Therapeutic approaches using locally administered MSCs have been considered a promising option. However, the viability of these cells is seriously threatened by acute hypoxic stress linked to wound healing.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is the consequence of an acute interruption of myocardial blood flow delimiting an area with ischemic necrosis. The loss of cardiomyocytes initiates cardiac remodeling in the myocardium, leading to molecular changes in an attempt to recover myocardial function. The purpose of this study was to unravel the differences in the molecular profile between ischemic and remote myocardium after AMI in an experimental model.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a manifestation of ischemic heart disease where the immune system plays an important role in the re-establishment of homeostasis. We hypothesize that the anti-inflammatory activity of secretomes from menstrual blood-derived mesenchymal stromal cells (S-MenSCs) and IFNγ/TNFα-primed MenSCs (S-MenSCs*) may be considered a therapeutic option for the treatment of AMI. To assess this hypothesis, we have evaluated the effect of S-MenSCs and S-MenSCs* on cardiac function parameters and the involvement of immune-related genes using a porcine model of AMI.

View Article and Find Full Text PDF
Article Synopsis
  • - MSR1, a receptor typically found in macrophages, shows significantly increased expression in peripheral blood mononuclear cells (PBMCs) of asthmatic patients, indicating its potential involvement in these conditions.
  • - The study analyzed PBMCs from healthy individuals and patients with asthma and COPD, confirming higher MSR1 expression through methods like RT-qPCR and flow cytometry.
  • - MSR1 was detected on various immune cell types, particularly B lymphocytes and monocytes, with expression levels varying based on disease type and severity, highlighting its potential role in asthma and COPD.
View Article and Find Full Text PDF

Polypropylene (PP) mesh is well-known as a gold standard of all prosthetic materials of choice for the reinforcement of soft tissues in case of hernia, organ prolapse, and urinary incontinence. The adverse effects that follow surgical mesh implantation remain an unmet medical challenge. Herein, it is outlined a new approach to allow viability and adhesion of human menstrual blood-derived mesenchymal stromal cells (MenSCs) on PP surgical meshes.

View Article and Find Full Text PDF

Mesenchymal stromal cells isolated from menstrual blood (MenSCs) exhibit a potent pro-angiogenic and immunomodulatory capacity. Their therapeutic effect is mediated by paracrine mediators released by their secretomes. In this work, we aimed to evaluate the effect of a specific priming condition on the phenotype and secretome content of MenSCs.

View Article and Find Full Text PDF

Highly prevalent respiratory diseases such as asthma and allergy remain a pressing health challenge. Currently, there is an unmet need for precise diagnostic tools capable of predicting the great heterogeneity of these illnesses. In a previous study of 94 asthma/respiratory allergy biomarker candidates, we defined a group of potential biomarkers to distinguish clinical phenotypes (i.

View Article and Find Full Text PDF

Olive-pollen allergy is one of the leading causes of respiratory allergy in Mediterranean countries and some areas of North America. Currently, allergen-specific immunotherapy is the only etiophatogenic treatment. However, this approach is not fully optimal, safe, or effective.

View Article and Find Full Text PDF