Publications by authors named "Maria Angeles Ventura"

The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V subtype (V R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V R-mediated MAP kinase pathway.

View Article and Find Full Text PDF

[(3)H]SSR-149415 is the first tritiated nonpeptide vasopressin V(1b) receptor (V(1b)R) antagonist ligand. It was used for studying rodent (mouse, rat, hamster) and human V(1b)R from native or recombinant origin. Moreover, a close comparison between the human and the mouse V(1b)R was performed using SSR-149415/[(3)H]SSR-149415 in binding and functional studies in vitro.

View Article and Find Full Text PDF

Cell-surface expression and biological functions of several intracellular-retained G protein-coupled receptors are restored by membrane-permeable ligands called pharmacological chaperones. We have previously demonstrated that a mutation of the hydrophobic motif 341FNX2LLX3L350 in the C terminus of the human pituitary vasopressin V3 receptor (MUT V3R) led to it being retained in the endoplasmic reticulum (ER). Here, we establish the precise role of this motif and investigate whether SSR149415, a non-peptide V3R antagonist, behaves as a pharmacological chaperone for the ER-retained MUT V3R.

View Article and Find Full Text PDF

Little is known about endoplasmic reticulum (ER) export signals, particularly those of members of the G-protein-coupled receptor family. We investigated the structural motifs involved in membrane export of the human pituitary vasopressin V1b/V3 receptor. A series of V3 receptors carrying deletions and point mutations were expressed in AtT20 corticotroph cells.

View Article and Find Full Text PDF