In recent years, the demand for natural and synthetic zeolites has surged due to their distinctive properties and myriad industrial applications. This research aims to synthesise crystalline zeolites by co-recycling two industrial wastes: salt slag (SS) and rice husk ash (RHA). Salt slag, a problematic by-product of secondary aluminium smelting, is classified as hazardous waste due to its reactive and leachable nature, though it is rich in aluminium.
View Article and Find Full Text PDFA new adsorbent based on an immobilized waste-derived LTA zeolite in agarose (AG) has proven to be an innovative and efficient alternative for removing metallic contaminants from water impacted by acid mine drainage (AMD) because the immobilization prevents the solubilization of the zeolite in acidic media and eases its separation from the adsorbed solution. A pilot device was developed containing slices of the sorbent material [AG (1.5%)-LTA (8%)] to be used in a treatment system under an upward continuous flow.
View Article and Find Full Text PDFCoal acid mine drainage (AMD) contaminates natural water to form mine-impacted water (MIW), which is characterized by high levels of acidity, sulfate, and metallic ions. This study investigates the use of a Linde Type-A (LTA) zeolite obtained from a hazardous industrial waste for Al, Fe, and Mn removal from synthetic aqueous solutions. The aim of this study is to stablish a basis for the subsequent treatment of MIW in order to obtain reuse water.
View Article and Find Full Text PDFJ Hazard Mater
November 2020
This paper comprises several assays aiming to identify the basis for the bioremediation of mine-impacted water (MIW). To do so, the conditions for build anoxic microcosms for treating this effluent were varied, containing MIW, and a source of chitin, to biostimulate sulfate-reducing bacteria (SRB). The chitin sources were: commercial chitin (CHIT) and shrimp shell (SS), which in addition to chitin, contains CaCO, and proteins in its composition.
View Article and Find Full Text PDFThis work aimed to remove sulfate and acidity from mine-impacted water (MIW) via electrocoagulation (EC), a technique which stands as an advanced alternative to chemical coagulation in pollutant removal from wastewaters. The multiple electrochemical reactions occurring in the aluminum anode and the stainless steel cathode surfaces can form unstable flakes of metal hydroxysulfate complexes, causing coagulation, flocculation, and floatation; or, adsorption of sulfate on sorbents originated from the electrochemical process can occur, depending on pH value. Batch experiments in the continuous mode of exposition using different current densities (35, 50, and 65 A m) were tested, and a statistical difference between their sulfate removals was detected.
View Article and Find Full Text PDFThis research analyzes the use of natural shrimp shell and commercial chitin for biosorption of metal ions in surface runoff. Investigation of the use of these biosorbent materials in drainage systems becomes a management measure for two extremely important issues in Brazil, fish waste management and the surface runoff quality. Methodological procedures involved treatments with different amounts of unprocessed shrimp shell and commercial chitin (5g and 10g) for 200mL of a compensatory drainage mechanism (infiltration swale).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2018
A sequencing batch conventional membrane bioreactor (SB-CMBR) and sequencing batch hybrid membrane bioreactor (SB-HMBR) were operated in parallel under two different hydraulic retention times (HRTs) (namely 12 h and 6 h), and their chemical oxygen demand (COD) and nutrient removal performance, membrane fouling behavior, and microbial community characteristics were compared. Both systems exhibited high organic matter (> 95%) and ammonium (> 98%) removal performance regardless of the HRT applied. As the HRT was reduced from 12 to 6 h, total nitrogen removal slightly increased in both reactors, being higher in the carrier-based MBR, where anoxic zones may have been established within the biofilm.
View Article and Find Full Text PDFIn this work, an adsorbent coal was characterized and its sorption properties for the removal of iron and manganese from aqueous solutions were determined. Energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) identified the presence of quartz, magnetite and manganese oxide in the adsorbent coal. The results of the adsorption isotherms verified the adsorption of iron and manganese by adsorbent coal showing a linear behaviour and indicated that chemisorption and physisorption occurred.
View Article and Find Full Text PDFThe coordination of iron(III) ion to hyaluronic acid (Hyal) in aqueous solutions and solid state was accomplished by potentiometric titrations and infrared spectroscopy. The potentiometric titration studies provided the binding constants for the complexes found in the systems and the speciation of these species according to the variation of pH values. The complexes found presented a complexing ability through both the chelating moieties of Hyal (via the N-glucosamine and D-glucoronic acid), showing no special preference for either one while in solid state, but when in aqueous solution the complexation via the N-glucosamine moiety was the preferred, forming two complexed species, ML and ML(2) (log K(ML)=8.
View Article and Find Full Text PDF