Publications by authors named "Maria Angeles Lezcano"

Background: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth.

View Article and Find Full Text PDF

Subaerial hydrothermal systems are of great interest for paleobiology and astrobiology as plausible candidate environments to support the origin of life on Earth that offer a unique and interrelated atmosphere-hydrosphere-lithosphere interface. They harbor extensive sinter deposits of high preservation potential that are promising targets in the search for traces of possible extraterrestrial life on Hesperian Mars. However, long-term quality preservation is paramount for recognizing biosignatures in old samples and there are still significant gaps in our understanding of the impact and extent of taphonomy processes on life fingerprints.

View Article and Find Full Text PDF

Paleobiological reconstructions based on molecular fossils may be limited by degradation processes causing differential preservation of biomolecules, the distinct taxonomic specificity of each biomolecule type, and analytical biases. Here, we combined the analysis of DNA, proteins and lipid biomarkers using 16S and 18S rRNA gene metabarcoding, metaproteomics and lipid analysis to reconstruct the taxonomic composition and metabolisms of a desiccated microbial mat from the McMurdo Ice Shelf (MIS) (Antarctica) dated ~1,000 years BP. The different lability, taxonomic resolution and analytical bias of each biomolecule type led to a distinct microbial community profile.

View Article and Find Full Text PDF

Hydrothermal systems and their deposits are primary targets in the search for fossil evidence of life beyond Earth. However, to learn how to decode fossil biomarker records in ancient hydrothermal deposits, we must first be able to interpret unambiguously modern biosignatures, their distribution patterns, and their association with physicochemical factors. Here, we investigated the molecular and isotopic profile of microbial biomarkers along a thermal gradient (from 29 to 72°C) in a hot spring (labeled Cacao) from El Tatio, a geyser field in the Chilean Andes with abundant opaline silica deposits resembling the nodular and digitate structures discovered on Mars.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding biomarkers' chemical nature and preservation is crucial for detecting life on other planets, with carbonates being particularly significant due to their association with life on Earth.
  • This study analyzed sedimentary records from Chile's Triassic-Jurassic period, utilizing a multianalytical approach combining biomarkers, metaproteomics, and a life detector chip (LDChip) to search for signs of ancient and modern life.
  • The findings suggest that using various biomarkers can improve the detection of extraterrestrial life by addressing challenges related to specificity and alterations over time, offering implications for future Mars missions.
View Article and Find Full Text PDF

Detecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes).

View Article and Find Full Text PDF

Microcystins (MC) are highly toxic secondary metabolites produced by cyanobacterial blooms in many freshwater ecosystems used for recreational and drinking water purposes. So far, biological processes remain to be optimized for an efficient cyanotoxin removal, and new approaches are necessary to compete with physical-chemical treatments. In previous studies we provided a new concept of membrane biofilm reactor made of recycled material, in which a single MC-degrading bacterial strain was inoculated.

View Article and Find Full Text PDF

Substrate-atmosphere interfaces in Antarctic geothermal environments are hot-cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection.

View Article and Find Full Text PDF

Massive proliferations of cyanobacteria coexist and have different interactions with other microorganisms, including microcystin (MC)-degrading bacteria. Despite their relevance in the environment for the removal of MCs, this bacterial community has been scarcely studied. The influence of physicochemical factors and the seasonal dynamics of toxic cyanobacteria on the relative abundance and seasonal dynamics of the MC-degrading bacterial community with mlr genes (mlr) were investigated during a two-year study at a water reservoir in central Spain.

View Article and Find Full Text PDF

The biodegradation of microcystins (MCs) by bacteria constitutes an important process in freshwater ecosystems to prevent the accumulation of toxins. However, little is known about the diversity and the seasonal dynamics of the bacterial community composition (BCC) involved in the degradation of MCs in nature. To explore these BCC shifts, high-throughput sequencing was used to analyse the 16S rRNA, mcyE and mlrA genes during a year in a freshwater reservoir with a toxic cyanobacterial bloom episode.

View Article and Find Full Text PDF

The microcystin biodegradation potential of a natural bacterial community coexisting with a toxic cyanobacterial bloom was investigated in a water reservoir from central Spain. The biodegradation capacity was confirmed in all samples during the bloom and an increase of A gene copies was found with increasing microcystin concentrations. Among the 24 microcystin degrading strains isolated from the bacterial community, only 28% showed presence of A gene, strongly supporting the existence and abundance of alternative microcystin degradation pathways in nature.

View Article and Find Full Text PDF

Grazing is a major regulating factor in cyanobacterial population dynamics and, subsequently, considerable effort has been spent on investigating the effects of cyanotoxins on major metazoan grazers. However, protozoan grazers such as free-living amoebae can also feed efficiently on cyanobacteria, while simultaneously posing a major threat for public health as parasites of humans and potential reservoirs of opportunistic pathogens. In this study, we conducted several experiments in which the freshwater amoeba Acanthamoeba castellanii was exposed to pure microcystin-LR (MC-LR) and six cyanobacterial strains, three MC-producing strains (MC-LR, MC-RR, MC-YR, MC-WR, [Dha7] MC-RR) and three strains containing other oligopeptides such as anabaenopeptins and cyanopeptolins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl5i98v9unmu94h24ck4eoadbv5mp1f3k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once