Background: To reduce the cost of the enzymes for the hydrolysis of lignocellulosic biomass, two main strategies have been followed: one, the reduction of enzyme dosing by the use of more efficient and stable enzymatic cocktails; another, to include accessory enzymes in the cocktails to increase yields by reducing the recalcitrant carbohydrate fraction remaining at the end of the process. To guide this second strategy, we have explored the chemical bond composition of different fractions of recalcitrant carbohydrates after enzymatic hydrolysis.
Results: Two lignocellulosic feedstocks of relevance for the biofuels industry have been analyzed, corn stover and sugarcane straw.