Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var.
View Article and Find Full Text PDFThe use of remote sensors (thermometers and cameras) to analyse crop water status in field conditions is fraught with several difficulties. In particular, average canopy temperature measurements are affected by the mixture of soil and green regions, the mutual shading of leaves and the variability of absorbed radiation. The aim of the study was to analyse how the selection of different 'regions of interest' (ROI) in canopy images affect the variability of the resulting temperature averages.
View Article and Find Full Text PDFAssociation mapping provides useful insights on the genetic architecture of quantitative traits across a large number of unrelated genotypes, which in turn allows an informed choice of the lines to be crossed for a more accurate characterization of major QTLs in a biparental genetic background. In this study, seedlings of 183 durum wheat elite accessions were evaluated in order to identify QTLs for root system architecture (RSA). The QTLs identified were compared with QTLs detected for grain yield and its component traits, plant height and peduncle length measured in a previous study where the same accessions were evaluated in 15 field trials with a broad range of soil moisture availability and productivity (Maccaferri et al.
View Article and Find Full Text PDFBackground: Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.
View Article and Find Full Text PDFIn a previous study on a maize (Zea mays L.) population of recombinant inbreds derived from B73 × H99, we identified several quantitative trait loci (QTL) for agronomic traits with high dominance-additive ratio. Then, for four of these QTL, we developed families of near-isogenic lines (NILs) homozygous either for the QTL allele from B73 (BB) or from H99 (HH); for two of these QTL, the NILs' families were produced in two different genetic backgrounds.
View Article and Find Full Text PDFThe evaluation of recombinant inbred lines (RILs) per se can be biased by inbreeding depression in case of allogamous species. To overcome this drawback, RILs can be evaluated in combination with testers; however, testers can carry dominant alleles at the quantitative trait loci (QTL), thus hampering their detection. This study was conducted on the maize (Zea mays L.
View Article and Find Full Text PDFAlthough heterosis is widely exploited in agriculture, a clear understanding of its genetic bases is still elusive. This work describes the development of maize recombinant near-isogenic lines (NILs) for the mendelization of six heterotic QTL previously identified based on a maize (Zea mays L.) RIL population.
View Article and Find Full Text PDFThe exploitation of heterosis is one of the most outstanding advancements in plant breeding, although its genetic basis is not well understood yet. This research was conducted on the materials arising from the maize single cross B73 x H99 to study heterosis by procedures of classical genetic and quantitative trait loci (QTL) analyses. Materials were the basic generations, the derived 142 recombinant inbred lines (RILs), and the three testcross populations obtained by crossing the 142 RILs to each parent and their F(1).
View Article and Find Full Text PDF